請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66408完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張震東 | |
| dc.contributor.author | Yueh-Ling Lee | en |
| dc.contributor.author | 李岳玲 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:34:20Z | - |
| dc.date.available | 2013-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-07 | |
| dc.identifier.citation | 1. S. W. Tait, D. R. Green, Nat Rev Mol Cell Biol 11, 621 (Sep, 2010).
2. R. C. Taylor, S. P. Cullen, S. J. Martin, Nat Rev Mol Cell Biol 9, 231 (Mar, 2008). 3. D. W. Nicholson, Cell Death Differ 6, 1028 (Nov, 1999). 4. H. R. Stennicke, G. S. Salvesen, Biochim Biophys Acta 1387, 17 (Sep 8, 1998). 5. M. J. Parsons, D. R. Green, F1000 Biol Rep 1, 17 (2009). 6. I. Budihardjo, H. Oliver, M. Lutter, X. Luo, X. Wang, Annu Rev Cell Dev Biol 15, 269 (1999). 7. M. Leist, M. Jaattela, Nat Rev Mol Cell Biol 2, 589 (Aug, 2001). 8. Y. Mei et al., Neoplasia 9, 871 (Oct, 2007). 9. O. von Ahsen et al., J Cell Biol 150, 1027 (Sep 4, 2000). 10. H. Yamaguchi, K. Bhalla, H. G. Wang, Cancer Res 63, 1483 (Apr 1, 2003). 11. H. L. Tang, A. H. Le, H. L. Lung, Biochem J 396, 1 (May 15, 2006). 12. D. W. Nicholson, N. A. Thornberry, Science 299, 214 (Jan 10, 2003). 13. H. K. Lorenzo, S. A. Susin, FEBS Lett 557, 14 (Jan 16, 2004). 14. M. van Gurp, N. Festjens, G. van Loo, X. Saelens, P. Vandenabeele, Biochem Biophys Res Commun 304, 487 (May 9, 2003). 15. L. Yu et al., Science 304, 1500 (Jun 4, 2004). 16. L. Vande Walle, M. Lamkanfi, P. Vandenabeele, Cell Death Differ 15, 453 (Mar, 2008). 17. Y. Zhang, B. A. Appleton, P. Wu, C. Wiesmann, S. S. Sidhu, Protein Sci 16, 1738 (Aug, 2007). 18. C. W. Gray et al., Eur J Biochem 267, 5699 (Sep, 2000). 19. Y. M. Seong et al., J Biol Chem 279, 37588 (Sep 3, 2004). 20. W. Li et al., Nat Struct Biol 9, 436 (Jun, 2002). 21. J. M. Jones et al., Nature 425, 721 (Oct 16, 2003). 22. B. Li et al., Cell Death Differ 17, 1773 (Nov, 2010). 23. Y. Shi, Cell Death Differ 9, 93 (Feb, 2002). 24. G. S. Salvesen, C. S. Duckett, Nat Rev Mol Cell Biol 3, 401 (Jun, 2002). 25. Q. H. Yang, R. Church-Hajduk, J. Ren, M. L. Newton, C. Du, Genes Dev 17, 1487 (Jun 15, 2003). 26. S. M. Srinivasula et al., J Biol Chem 278, 31469 (Aug 22, 2003). 27. Y. Suzuki, K. Takahashi-Niki, T. Akagi, T. Hashikawa, R. Takahashi, Cell Death Differ 11, 208 (Feb, 2004). 28. J. Hartkamp, S. G. Roberts, Cell Cycle 9, 2508 (Jul 1, 2010). 29. J. Kooistra, J. Milojevic, G. Melacini, J. Ortega, J Alzheimers Dis 17, 281 (2009). 30. Y. J. Kang et al., Biochem Biophys Res Commun 393, 794 (Mar 19, 2010). 31. L. Cilenti et al., J Biol Chem 279, 50295 (Nov 26, 2004). 32. C. Y. Wang, Y. S. Lin, W. C. Su, C. L. Chen, C. F. Lin, Mol Biol Cell 20, 4153 (Oct, 2009). 33. M. P. Balakrishnan et al., Am J Physiol Heart Circ Physiol 297, H643 (Aug, 2009). 34. M. Marabese, M. Mazzoletti, F. Vikhanskaya, M. Broggini, Cell Death Differ 15, 849 (May, 2008). 35. U. M. Moll, S. Erster, A. Zaika, Biochim Biophys Acta 1552, 47 (Dec 28, 2001). 36. J. Downward, Semin Cell Dev Biol 15, 177 (Apr, 2004). 37. L. Yang et al., J Biol Chem 282, 10981 (Apr 13, 2007). 38. D. Park, S. S. Choi, K. S. Ha, Amino Acids 39, 619 (Aug, 2010). 39. P. G. Mastroberardino, M. Piacentini, J Intern Med 268, 419 (Nov, 2010). 40. S. Gundemir, G. Colak, J. Tucholski, G. V. Johnson, Biochim Biophys Acta, (Oct 10, 2011). 41. P. Kotsakis, M. Griffin, Amino Acids 33, 373 (Aug, 2007). 42. R. Ientile, D. Caccamo, M. Griffin, Amino Acids 33, 385 (Aug, 2007). 43. G. Melino et al., Mol Cell Biol 14, 6584 (Oct, 1994). 44. E. Png et al., J Cell Physiol 226, 693 (Mar, 2011). 45. L. Fesus et al., FEBS Lett 245, 150 (Mar 13, 1989). 46. L. Fesus, Z. Szondy, FEBS Lett 579, 3297 (Jun 13, 2005). 47. J. Tucholski, G. V. Johnson, J Neurochem 81, 780 (May, 2002). 48. C. Rodolfo et al., J Biol Chem 279, 54783 (Dec 24, 2004). 49. J. Y. Fok, K. Mehta, Apoptosis 12, 1455 (Aug, 2007). 50. W. Malorni et al., Cell Death Differ 16, 1480 (Nov, 2009). 51. M. A. Antonyak et al., J Biol Chem 276, 33582 (Sep 7, 2001). 52. A. Verma, K. Mehta, Drug Resist Updat 10, 144 (Aug-Oct, 2007). 53. A. Verma et al., Cancer Res 66, 10525 (Nov 1, 2006). 54. L. Cao et al., Carcinogenesis 29, 1893 (Oct, 2008). 55. G. Y. Jang et al., Oncogene 29, 356 (Jan 21, 2010). 56. H. Yamaguchi, H. G. Wang, Mol Cell Biol 26, 569 (Jan, 2006). 57. S. Gundemir, G. V. Johnson, PLoS One 4, e6123 (2009). 58. M. Lesort, K. Attanavanich, J. Zhang, G. V. Johnson, J Biol Chem 273, 11991 (May 15, 1998). 59. T. Milakovic, J. Tucholski, E. McCoy, G. V. Johnson, J Biol Chem 279, 8715 (Mar 5, 2004). 60. K. Igarashi, K. Kashiwagi, Int J Biochem Cell Biol 42, 39 (Jan, 2010). 61. K. Hoshino et al., J Biol Chem 280, 42801 (Dec 30, 2005). 62. M. K. Haddox, D. H. Russell, Proc Natl Acad Sci U S A 78, 1712 (Mar, 1981). 63. M. Piacentini, N. Martinet, S. Beninati, J. E. Folk, J Biol Chem 263, 3790 (Mar 15, 1988). 64. L. Yang, W. Li, Z. Tian, J. Zhao, C. Wang, Toxicol In Vitro 25, 882 (Jun, 2011). 65. Y. Ohtake et al., Life Sci 81, 577 (Jul 26, 2007). 66. F. Facchiano et al., Exp Cell Res 271, 118 (Nov 15, 2001). 67. Q. Yuan, R. M. Ray, L. R. Johnson, Am J Physiol Cell Physiol 282, C1290 (Jun, 2002). 68. E. Soderstjerna, C. M. Holst, K. Alm, S. M. Oredsson, Anticancer Drugs 21, 917 (Nov, 2010). 69. I. Stanic et al., J Cell Physiol 216, 153 (Jul, 2008). 70. I. Stanic, A. Facchini, R. M. Borzi, C. Stefanelli, F. Flamigni, J Cell Physiol 219, 109 (Apr, 2009). 71. K. J. Svensson et al., Cancer Res 68, 9291 (Nov 15, 2008). 72. T. Nitta, K. Igarashi, N. Yamamoto, Exp Cell Res 276, 120 (May 15, 2002). 73. S. Y. Cho et al., Exp Mol Med 42, 639 (Sep 30, 2010). 74. S. J. Yi, J. Groffen, N. Heisterkamp, BMC Biochem 12, 8 (2011). 75. S. H. Kao et al., J Cell Biochem 110, 660 (Jun 1, 2010). 76. J. E. Davies, C. Rose, S. Sarkar, D. C. Rubinsztein, Sci Transl Med 2, 34ra40 (Jun 2, 2010). 77. L. Elli et al., Lab Invest 91, 452 (Mar, 2011). 78. Y. Ohtake et al., Cell Biochem Funct 26, 359 (Apr, 2008). 79. D. Caccamo, M. Curro, N. Ferlazzo, S. Condello, R. Ientile, Amino Acids, (Jul 30, 2011). 80. L. Lorand, R. M. Graham, Nat Rev Mol Cell Biol 4, 140 (Feb, 2003). 81. Y. Takeuchi, P. J. Birckbichler, M. K. Patterson, Jr., K. N. Lee, FEBS Lett 307, 177 (Jul 28, 1992). 82. G. Hasegawa et al., Biochem J 373, 793 (Aug 1, 2003). 83. K. E. Achyuthan, C. S. Greenberg, J Biol Chem 262, 1901 (Feb 5, 1987). 84. S. Mishra, G. Melino, L. J. Murphy, J Biol Chem 282, 18108 (Jun 22, 2007). 85. S. J. Kim, K. H. Kim, E. R. Ahn, B. C. Yoo, S. Y. Kim, Amino Acids, (Sep 30, 2011). 86. J. Lee et al., J Biol Chem 279, 53725 (Dec 17, 2004). 87. F. Rossin, M. D'Eletto, D. Macdonald, M. G. Farrace, M. Piacentini, Amino Acids, (Apr 10, 2011). 88. M. D'Eletto et al., Autophagy 5, 1145 (Nov, 2009). 89. P. G. Mastroberardino et al., Biochim Biophys Acta 1757, 1357 (Sep-Oct, 2006). 90. G. Battaglia et al., J Neurochem 100, 36 (Jan, 2007). 91. S. Chalmers, D. G. Nicholls, J Biol Chem 278, 19062 (May 23, 2003). 92. H. Tatsukawa et al., Gastroenterology 136, 1783 (May, 2009). 李昱蓉(2010)轉穀氨醯胺酶催化之 HeLa 細胞中組蛋白多胺類修飾。國立台灣大學生化科學所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66408 | - |
| dc.description.abstract | 細胞凋亡是遍存於自然界的細胞自我死亡現象,許多作用與如何被調控的機制仍待證明。轉穀氨醯胺酶II、多胺類和多胺類修飾是否牽涉在細胞凋亡過程中,以及被多胺類所修飾受質的身分,一直都是許多文獻想研究的重點。
本研究中,我們使用實驗室製備的抗精胺抗體確定了在 staurosporine 所誘發 HeLa 細胞的細胞凋亡過程中,多胺類修飾是被轉穀氨醯胺酶II的轉醯胺功能和多胺類所調節;且隨著細胞凋亡的情況加劇,多胺類修飾更明顯。加入轉穀氨醯胺酶II的抑制劑:cystamine 後,轉醯胺反應會被抑制,多胺類修飾程度降低,細胞死亡率亦下降,因此判斷轉穀氨醯胺酶II的轉醯胺功能是能促進 HeLa 細胞凋亡。另外發現,細胞內多胺類的含量降低會使轉穀氨醯胺酶II的轉醯胺反應提高,加速細胞凋亡的發生,判斷多胺類具有保護 HeLa 細胞的角色。細胞凋亡過程中,被多胺類所主要修飾的兩個小分子蛋白質(分子量約為 14 kDa 和 20 kDa)的身分也是我們接續研究的重點。 本實驗室之前以蛋白質純化及質譜儀鑑定發現在小鼠組織中 HtrA2/Omi 蛋白質能與精胺結合,此蛋白質為促進細胞凋亡的重要蛋白質。本研究在 HeLa 細胞內確定了 HtrA2/Omi 蛋白質能被多胺類修飾,但被多胺類修飾的生理意義仍須進一步的探討與釐清。 | zh_TW |
| dc.description.abstract | Apoptosis is an autonomous cell-death phenomenon, whose underlying mecha-nisms remain to be investigated. The involvement of transglutaminse II, polyamine and polyamination in apoptosis, and identities of polyamine-modified proteins have been vigorously studied in recent years.
In this study, we have generated an anti-spermine antiserum and confirm that pol-yamination is regulated by the transamidation activity of transglutaminse II and poly-amine in staurosporine-induced apoptosis in HeLa cells. The increase in polyamination in HeLa cells induced by staurosporine is dose-dependent. Treatment with cystamine, an inhibitor of transglutaminse II, decreased the transamidation activity, polyamination and cell death of HeLa cells. This suggests the transamidation activity of transglutaminse II is pro-apoptosis in HeLa cells. Depletion of spermine level in HeLa cells accelerates apoptosis; this suggests the role of polyamine in HeLa cells is pro-cell survival. The identification of two major polyamine-modified proteins, molecular weight of about 14 and 20 kDa, in apoptosis are in progress. We have previously identified HtrA2/Omi, an important pro-apoptosis protein, as a spermine-binding protein. In this study, we confirm HtrA2/Omi is a polyamine-modified protein in HeLa cells, but the physiological function of polyamination of this protein requires further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:34:20Z (GMT). No. of bitstreams: 1 ntu-101-R98b46032-1.pdf: 1780801 bytes, checksum: cace543d6687460bb7c080ecaec3aae2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 縮寫表 iv 目錄 vi 第一章 前言 第一節 細胞凋亡(Cell apoptosis 1 第二節 HtrA2/Omi 蛋白質 3 第三節 轉穀氨醯胺酶II(transglutaminase II,TG2) 5 第四節 多胺類(polyamines) 8 第五節 研究目的 9 第二章 實驗材料與方法 第一節 細胞學實驗 11 第二節 DNA fragmentation 12 第三節 MTT [3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay 12 第四節 蛋白質分析 13 第五節 In vivo transamidation 16 第三章 實驗結果 第一節 細胞凋亡系統建立 17 第二節 細胞凋亡過程中,被多胺類修飾(polyamination)蛋白質的變化 19 第三節 細胞凋亡過程中,轉醯胺反應(transamidation)的變化 21 第四節 轉穀氨醯胺酶II與多胺類調控細胞凋亡過程的角色 21 第五節 細胞凋亡過程中,HtrA2/Omi 蛋白質被多胺類修飾的情形 23 第四章 討論與總結 第一節 轉穀氨醯胺酶II與多胺類皆參與了細胞凋亡的調控 24 第二節 轉穀氨醯胺酶II的轉醯胺功能是促進細胞凋亡(pro-apoptosis)的角色 25 第三節 細胞凋亡過程中,轉穀氨醯胺酶II的轉醯胺功能在不同細胞部位的可能作用 26 第四節 多胺類在細胞凋亡過程中的角色 29 第五節 Staurosporine(STS)引發的細胞凋亡過程中,被多胺類修飾蛋白質身分的確定 30 第六節 HtrA2/Omi 蛋白質被多胺類修飾的可能生理意義 30 第七節 結語 31 第五章 實驗結果圖表 圖一 STS處理 HeLa 細胞24 小時的細胞死亡變化 32 圖二 STS 引發的細胞凋亡過程中,HeLa 細胞內的改變 33 圖三 STS 引發的細胞凋亡過程中,HeLa 細胞內轉穀氨醯胺酶II與多胺類修飾的改變 35 圖四 STS 引發的細胞凋亡過程中,HeLa 細胞內 in vivo transamidation 的現象 37 圖五 STS 引發的 HeLa 細胞凋亡過程中,cystamine 和 denspm 加藥後的細胞死亡變化 39 圖六 STS 引發的細胞凋亡過程中,轉穀氨醯胺酶II和多胺類在其中的角色 40 圖七 STS 引發的細胞凋亡過程中,HtrA2/Omi蛋白質被多胺類修飾的情形 42 參考文獻 43 附錄圖表 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 轉穀氨醯胺酶 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 多胺類 | zh_TW |
| dc.subject | 多胺類修飾 | zh_TW |
| dc.subject | HtrA2/Omi | zh_TW |
| dc.subject | polyamination | en |
| dc.subject | apoptosis | en |
| dc.subject | HtrA2/Omi | en |
| dc.subject | transglutaminse II | en |
| dc.subject | polyamine | en |
| dc.title | 多胺類修飾在細胞凋亡過程中之角色 | zh_TW |
| dc.title | The Role of Polyamination in Apoptosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明亭,陳宏文,張茂山 | |
| dc.subject.keyword | 細胞凋亡,轉穀氨醯胺酶,Ⅱ,多胺類,多胺類修飾,HtrA2/Omi, | zh_TW |
| dc.subject.keyword | apoptosis,transglutaminse II,polyamine,polyamination,HtrA2/Omi, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
