Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66404
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Min Wang)
dc.contributor.authorKuan Hsuen
dc.contributor.author徐寬zh_TW
dc.date.accessioned2021-06-17T00:34:08Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-03
dc.identifier.citation[1] Qi XL, Zhang SC, Rev. Mod. Phys,83:1057,( 2011)
[2] Hasan MZ, Kane CL, Rev. Mod. Phys,82:3045,(2011)
[3] Maciejko J, Hughes TL and Zhang SC, Annu. Rev. Condens. Matter Phys. 2:31–53,(2011)
[4] Hasan MZ, Moore JE,Annu. Rev. Condens. Matter Phys. 2:55–78,( 2011)
[5] Nielsen HB, Ninomiya M, Nucl. Phys. B 185:20–40,(1981)
[6] Nielsen HB, Ninomiya M, Nucl. Phys. B 193:173–94,(1981)
[7] Shun-Qing Shen Topological Insulators Dirac Equation in Condensed Matter,(2012)
[8] Hongming Weng, Chen Fang,Zhong Fang,B. Andrei Bernevig,4 and Xi Dai1, PHYSICAL REVIEW X 5, 011029 (2015)
[9] Su-Yang Xu,Ilya Belopolski,Nasser Alidoust, Madhab Neupane and Guang Bian, SCIENCE, Vol 349, (2015)
[10] Weng H, Fang C, Fang Z, Bernevig BA, and Dai X, Phys. Rev. X5:011029,(2015)
[11] Huang SM, Xu SY, Belopolski I, Lee CC, Chang G, et al, Nat .Commun. 6:8373,(2015)
[12] Raman Sankar, G Peramaiyan, I Panneer Muthuselvam,Suyang Xu, M Zahid Hasan and F C Chou, J. Phys Condens. Matter 30 (2018)
[13] Xiaochun Huang, Lingxiao Zhao, Yujia Long, Peipei Wang, Dong Chen, Zhanhai Yang,1 Hui Liang, Mianqi Xue, Hongming Weng, Zhong Fang, Xi Dai, and Genfu Chen, PHYSICAL REVIEW X 5, 031023 (2015)
[14] Madhab Neupane1, Su-Yang Xu1, Raman Sankar, Nasser Alidoust, Guang Bian , Chang Liu, Ilya Belopolski1 , Tay-Rong Chang, Horng-Tay Jeng, Hsin Lin, Arun Bansil, Fangcheng Chou and M. Zahid Hasan, NATURE COMMUNICATIONS, 5:3786,(2014)
[15] Hui Li1, Hongtao He, Hai-Zhou Lu2, Huachen Zhang, Hongchao Liu, Rong Ma, Zhiyong Fan, Shun-Qing Shen and Jiannong Wang, NATURE COMMUNICATIONS 7:10301,(2015)
[16] Yang Xu, Ireneusz Miotkowski1, Chang Liu, Jifa Tian, Hyoungdo Nam, Nasser Alidoust, Jiuning Hu, Chih-Kang Shih5,M. Zahid Hasan and Yong P. Chen1, NATURE PHYSICS ,Vol 10 ,(2014)
[17] Bahramy MS, Clark OJ, Yang BJ, Feng J, Bawden L, Riley JM, et al, Nat Mater, (2018)
[18] B. D. Cullity. Introduction to Magnetic Materials. New York. Addison-Wesley
[19] Introduction of Solid state Physics, Kittel,Charles
[20] B. D. Cullity. Introduction to Magnetic Materials. New York. Addison-Wesley (1972).
[21] S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki , H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,PHYSICAL REVIEW B 81,184519(2010)
[22] Ian A. Leahya , Yu-Ping Lina , Peter E. Siegfrieda , Andrew C. Tregliaa , Justin C. W. Songb , Rahul M. Nandkishorea,c , and Minhyea Lee, PNAS ,vol115,no. 42,(2018)
[23] Orest Pavlosiuk 1 Dariusz Kaczorowski, scientific report,8:11297,(2018)
[24] Matthew Brahlek , Nikesh Koirala , Namrata Bansal, Seongshik Oh, Solid state Communication , Pages 54-62,(2015)
[25] R. Xu, A. Husmann, T. F. Rosenbaum, M.-L. Saboungi, J. E. Enderbya, and P. B. Littlewood, Nature (London) 390, 57 (1997)
[26] M. M. Parish and P. B. Littlewood, Nature 426, 162–165 (2003).
[27] A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998)
[28] Y. Sun, S. Pyon, and T. Tamegai, Phys. Rev. B 93, 104502 (2016).
[29] Adler SL, Phys. Rev,177:2426–38,(1969)
[30] Bell JS and Jackiw R, Nuovo Cim. A 60:47–61,(1969)
[31] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Pub., Seoul, 1997), Chap. 19.
[32] H.B. NIELSEN and Masao NINOMIYA, PHYSICS LETTERS, Volume 130B, number 6,(1983)
[33] Hang Chi, Cheng Zhang, Genda Gu, Dmitri E Kharzeev, Xi Dai and Qiang Li, New J. Phys,19 (2017)
[34] Heon-Jung Kim, Ki-Seok Kim, et al, PRL 111, 246603 (2013)
[35] Fiseha Tesfaye, Dmitry Sukhomlinov , Daniel Lindberg , Pekka Taskinen , Guven Akdogan, F. Tesfaye et al ,J. Chem. Thermodynamics 106, 47–58,(2017)
[36] W. H. Bragg and W. L. Bragg, Proc. R. Soc. Lond. A 1913 88 (1913).
[37] Sandip Dey and Vimal K. Jain, Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
[38] Jia Cheng, Danil W. Boukhvalov, Gianluca D’Olimpio, François C. Bocquet, Chia-Nung Kuo, Anan Bari Sarkar, Barun Ghosh, Chin Shan Lue, Mykhailo Vorokhta , Amit Agarwal, Lixue Zhang and Antonio Politano ,(unpublish)
[39] Victor V. Subbotin, Anna Vymazalová, František Laufek, Yevgeny E. Savchenko, Chris J. Stanley, Dmitry A. Gabov and Jakub Plášil, Mitrofanovite, Mineralogical Magazine ; 83 (4): 523–530,(1994)
[40] M.A. Continentino, Eur. Phys. J. B 13, 31–35 (2000)
[41] J.-M. Zhang, W. Ming, Z. Huang, G.-B. Liu, X. Kou, Y. Fan, K. L. Wang, and Y. Yao, Phys. Rev. B 88, 235131 (2013).
[42]王碩宏,台大物理所碩士論文,2019
[43] M. M. Parish and P. B. Littlewood, Nature 426, 162–165 (2003).
[44] Heon-Jung Kim,1, Ki-Seok Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, PRL 111, 246603 (2013)
[45] Lukas Zhao, Haiming Deng, Inna Korzhovska, Zhiyi Chen, Marcin Konczykowski, Andrzej Hruban, Vadim Oganesyan, and Lia Krusin-Elbaum, NATURE MATERIALS, Vol 13,(2014)
[46] M. K. Hooda and C. S. Yadav, Phys. Rev. B 98,165119 (2018)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66404-
dc.description.abstract本研究藉由量測分析Pt3Te4之電磁傳輸來確認Pt3Te4是否如先前理論計算結果為拓撲半金屬,Pt3Te4單晶由自我助熔法合成,並經過X光繞射分析後確認為c軸朝上之單晶,從電性分析上本研究取兩個樣品各別做分析比較,發現雖然取樣上尺寸些許不同但在低溫下電性並沒有太大的區別大約在~0.5 µΩcm,傳輸載子為p-type濃度約1021~1022 cm-3,再零磁低溫下Pt3Te4具有費米液體的特徵,比熱分析上Pt3Te4之Kadowaki-Woods係數RKW~10-6 µΩ cm/(mole K /mJ)^2,在低溫2.5K有觀察到~90%磁阻,本實驗透過施加不同方向的磁場做磁阻分析,磁場垂直電流方向之線性不飽和磁阻可以用PL-model做解釋,而磁場平行電流時在低溫下量測出拓撲半金屬才有的負磁阻,此外在2.5 K之負磁阻可以用Adler-Bell-Jackiw Anomaly之模型做良好的擬合,磁性分析上Pt3Te4之大塊單晶在10 K以下小於臨界磁場0.2 T的範圍中有順磁性的趨勢,評估為拓撲絕緣體中狄拉克錐表面態的狄拉克費米子的磁反應所造成的現象。
zh_TW
dc.description.abstractPt3Te4 was considered a topological semimetal candidate by previously theoretical study. Therefore, in the research we tried to identify Pt3Te4 single crystals by studying low-temperature electro-transport. The Pt3Te4 single crystal were prepared by the self-flux method. In this work, we prepared two Pt3Te4 single crystals with difference sizes as probed samples. The results of electrical measurements indicate that Pt3Te4 performs metal-like transport properties such as high electrical conductance and fermi liquid behavior at low temperature(T<50 K). Similarly, The metal-like behavior was clarified by Kadowaki-Woods value of ~10-6 µΩ cm/(mole K /mJ)^2 calculated from resistivity and specific heat measurements. We observed high transverse magnetoresistance (TMR)~90% at 2.5 K under 6 T magnetic field. Furthermore, we founded that the negative longitude magnetoresistance (NLMR) phenomenon at low temperature region (T=2.5 K), which is considered as the fingerprint of topological semimetal, strongly supporting the scenario that chirality anomaly magnetic transport in Pt3Te4. Interestingly, in the dc magnetic measurement of single crystal of Pt3Te4, we observed cusp-like low-field paramagnetic response (H<0.2T) at low temperatures(T<10K). The low field paramagnetic response can be described by the Dirac fermion spin response of magnetic field in the Dirac cone surface state.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:34:08Z (GMT). No. of bitstreams: 1
U0001-0202202113544400.pdf: 4285229 bytes, checksum: bb2d074bf650602b5a6011109f9bb6ae (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄
致謝 2
摘要 3
Abstract 4
目錄 5
圖目錄 8
第一章 緒論 11
1-1 拓撲半金屬 11
1-1-1 TaAs文獻回顧 12
1-1-2 Cd3As2文獻回顧 14
1-2 研究動機 16
第二章 理論背景與原理簡介 18
2-1 霍爾效應 18
2-2 能帶理論 19
2-3 物質磁性介紹 21
2-3-1磁性簡介 21
2-3-2順磁性 21
2-3-3反磁性 22
2-3-4鐵磁性 22
2-3-5反鐵磁性 23
2-4 Kohler’s rule 24
2-5弱局域效應(Weak Localization, WL)與弱反局域效應(Weak Anti-Localization, WAL) 25
2-6 磁阻理論 27
2-6-1 Parish and Littlewood model (PL model) 線性磁阻理論 27
2-6-2 線性Abrikosov量子磁阻 29
2-7手相磁效應(chiral magnetic effect,CME) 31
第三章 實驗方法 34
3-1 實驗流程 34
3-2 Pt3Te4樣品合成 35
3-3-1 X光繞射分析儀(X-ray Diffractometer, XRD) 36
3-3-2 SQUID量測系統 37
3-3-3電性量測架構 38
第四章實驗結果與討論 39
4-1 Pt3Te4結構 39
4-2 電性量測結果 40
4-2-1 縱向電阻率與溫度變化圖 40
4-2-2 橫向電阻率與溫度變化圖 41
4-2-3載子濃度與遷移率變化圖 42
4-2-4橫向電阻率(ρxy)與磁場變化圖 44
4-2-5 TMRH//c與溫度關係 45
4-3磁阻量測結果 45
4-4比熱量測結果 48
4-5樣品二磁阻分析 49
4-5-1 MRH//c,Orb與磁場關係 49
4-5-2 Kohler’s plot分析 50
4-5-3 Abrikosov’s量子磁阻分析 51
4-5-4 PL Model 磁阻分析 53
4-6 LMRH//c分析 55
4-7磁性分析 56
4-7-1磁矩對溫度關係 56
4-7-2磁化率與磁場關係 58
第五章 結論 62
Reference 63
dc.language.isozh-TW
dc.subject自我助溶法zh_TW
dc.subject拓撲半金屬zh_TW
dc.subject狄拉克費米子zh_TW
dc.subjectPt3Te4zh_TW
dc.subjectself-fluxen
dc.subjecttopological semimetalen
dc.subjectPt3Te4en
dc.subjectDirac fermionen
dc.title單晶四碲化三鉑低溫電磁傳輸特性之研究zh_TW
dc.titleLow- temperature properties of Pt3Te4 single crystalen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃斯衍(Ssu-Yen Huang),李偉立(Wei-Li Lee)
dc.subject.keyword拓撲半金屬,自我助溶法,狄拉克費米子,Pt3Te4,zh_TW
dc.subject.keywordtopological semimetal,self-flux,Dirac fermion,Pt3Te4,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202100374
dc.rights.note有償授權
dc.date.accepted2021-02-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-0202202113544400.pdf
  未授權公開取用
4.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved