請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66393完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉光勝(Kuang?Sheng Yeh) | |
| dc.contributor.author | Chia-Jung Hsieh | en |
| dc.contributor.author | 謝家容 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:33:37Z | - |
| dc.date.available | 2021-02-17 | |
| dc.date.copyright | 2020-02-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-07 | |
| dc.identifier.citation | 1. Yeh KS, Hancox LS, Clegg S: Construction and characterization of a fimZ mutant of Salmonella typhimurium. J Bacteriol 1995, 177(23):6861-6865.
2. Tinker JK, Clegg S: Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun 2000, 68(6):3305-3313. 3. Tinker JK, Hancox LS, Clegg S: FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2001, 183(2):435-442. 4. Chuang YC, Wang KC, Chen YT, Yang CH, Men SC, Fan CC, Chang LH, Yeh KS: Identification of the genetic determinants of Salmonella enterica serotype Typhimurium that may regulate the expression of the type 1 fimbriae in response to solid agar and static broth culture conditions. BMC Microbiol 2008, 8(1):126. 5. Duguid JP, Smith IW, Dempster G, Edmunds PN: Non-flagellar filamentous appendages (“fimbriæ”) and hæmagglutinating activity in Bacterium coli. J Pathol Bacteriol 1955, 70(2):335-348. 6. Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A: Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Path 2012, 8(6):e1002776. 7. Salmon DE, Smith T: Report on swine plague. US Bureau of Animal Industries. 2nd Ann Rep US Gov’t Printing Office, Washington 1885, 184. 8. Le Minor L, Popoff MY: Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella: request for an opinion. Int J Syst Bacteriol 1987, 37(4):465-468. 9. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJd: Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989, 27(2):313-320. 10. Popoff MY, Bockemühl J, Gheesling LL: Supplement 2002 (no. 46) to the Kauffmann–White scheme. Res Microbiol 2004, 155(7):568-570. 11. Popoff MY, Bockemühl J, Brenner FW: Supplement 1998 (no. 42) to the Kauffmann-White scheme. Res Microbiol 2000, 151(1):63-65. 12. Desai PT, Porwollik S, Long F, Cheng P, Wollam A, Clifton SW, Weinstock GM, McClelland M: Evolutionary genomics of Salmonella enterica subspecies. MBio 2013, 4(2):e00579-00512. 13. Edwards RA, Olsen GJ, Maloy SR: Comparative genomics of closely related salmonellae. Trends Microbiol 2002, 10(2):94-99. 14. Besser JM: Salmonella epidemiology: a whirlwind of change. Food Microbiol 2018, 71:55-59. 15. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB, Wegener HC, Aarestrup FM: Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 2011, 8(8):887-900. 16. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ: Typhoid Fever. New Engl J Med 2002, 347(22):1770-1782. 17. Wain J, Hendriksen RS, Mikoleit ML, Keddy KH, Ochiai RL: Typhoid fever. The Lancet 2015, 385(9973):1136-1145. 18. Crump JA, Mintz ED: Global trends in typhoid and paratyphoid fever. Clin Infect Dis 2010, 50(2):241-246. 19. Fàbrega A, Vila J: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013, 26(2):308-341. 20. Gal Mor O, Boyle EC, Grassl GA: Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol 2014, 5:391. 21. Coburn B, Grassl GA, Finlay BB: Salmonella, the host and disease: a brief review. Immunol Cell Biol 2007, 85(2):112-118. 22. Marzel A, Desai PT, Goren A, Schorr YI, Nissan I, Porwollik S, Valinsky L, McClelland M, Rahav G, Gal Mor O: Persistent infections by nontyphoidal Salmonella in humans: epidemiology and genetics. Clin Infect Dis 2016, 62(7):879-886. 23. Gordon MA: Invasive non-typhoidal Salmonella disease–epidemiology, pathogenesis and diagnosis. Curr Opin Infect Dis 2011, 24(5):484. 24. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra RM: The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 2010, 50(6):882-889. 25. Chen PL, Li CY, Hsieh TH, Chang CM, Lee HC, Lee NY, Wu CJ, Lee CC, Shih HI, Ko WC: Epidemiology, disease spectrum and economic burden of non-typhoidal Salmonella infections in Taiwan, 2006–2008. Epidemiol Infect 2012, 140(12):2256-2263. 26. Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H, Adams LG, Bäumler AJ: Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 2002, 70(5):2249-2255. 27. Parisi A, Crump JA, Glass K, Howden BP, Furuya Kanamori L, Vilkins S, Gray DJ, Kirk MD: Health outcomes from multidrug-resistant Salmonella infections in high-income countries: a systematic review and meta-analysis. Foodborne Pathog Dis 2018, 15(7):428-436. 28. Mellor KC, Petrovska L, Thomson NR, Harris K, Reid SW, Mather AE: Antimicrobial resistance diversity suggestive of distinct Salmonella Typhimurium sources or selective pressures in food-production animals. Front Microbiol 2019, 10:708. 29. Ragupathi NKD, Sethuvel DPM, Gajendran R, Anandan S, Walia K, Veeraraghavan B: Horizontal transfer of antimicrobial resistance determinants among enteric pathogens through bacterial conjugation. Curr Microbiol 2019, 76(6):666-672. 30. Foster JW, Hall HK: Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 1991, 173(16):5129-5135. 31. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nat Rev Microbiol 2001, 413(6858):852. 32. Audia JP, Webb CC, Foster JW: Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 2001, 291(2):97-106. 33. Arabyan N, Park D, Foutouhi S, Weis AM, Huang BC, Williams CC, Desai P, Shah J, Jeannotte R, Kong N: Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling. Sci Rep 2016, 6:29525. 34. Dandekar T, Fieselmann A, Fischer E, Popp J, Hensel M, Noster J: Salmonella—how a metabolic generalist adopts an intracellular lifestyle during infection. Front Cell Infect Microbiol 2015, 4:191. 35. Chevance FFV, Hughes KT: Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 2008, 6(6):455. 36. Stecher B, Hapfelmeier S, Müller C, Kremer M, Stallmach T, Hardt WD: Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 2004, 72(7):4138-4150. 37. Jones BD, Ghori N, Falkow S: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 1994, 180(1):15-23. 38. He SY, Nomura K, Whittam TS: Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 2004, 1694(1-3):181-206. 39. Hensel M: Salmonella pathogenicity island 2. Mol Microbiol 2000, 36(5):1015-1023. 40. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW: SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 1998, 95(24):14057-14059. 41. McGhie EJ, Hayward RD, Koronakis V: Cooperation between actin‐binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 2001, 20(9):2131-2139. 42. Patel JC, Galán JE: Differential activation and function of Rho GTPases during Salmonella–host cell interactions. J Cell Biol 2006, 175(3):453-463. 43. De Jong HK, Parry CM, van der Poll T, Wiersinga WJ: Host–pathogen interaction in invasive salmonellosis. PLoS Path 2012, 8(10):e1002933. 44. Crouch ML, Becker LA, Bang IS, Tanabe H, Ouellette AJ, Fang FC: The alternative sigma factor σE is required for resistance of Salmonella enterica serovar Typhimurium to anti‐microbial peptides. Mol Microbiol 2005, 56(3):789-799. 45. Houwink A, Van Iterson W: Electron microscopical observations on bacterial cytology II. A study of flagellation. Biochim Biophys Acta 1950, 5:10-44. 46. Ottow JCG: Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol 1975, 29(1):79-108. 47. Thanassi DG, Nuccio SP, Shu SKS, Bäumler A: Fimbriae: Classification and Biochemistry. EcoSal Plus 2007, 2(2). doi: 10.1128/ecosalplus.2.4.2.1. 48. Humphries A, DeRidder S, Bäumler AJ: Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 2005, 73(9):5329-5338. 49. Wiedemann A, Virlogeux Payant I, Chaussé AM, Schikora A, Velge P: Interactions of Salmonella with animals and plants. Front Microbiol 2015, 5:791. 50. Buchanan K, Falkow S, Hull R, Hull S: Frequency among Enterobacteriaceae of the DNA sequences encoding type 1 pili. J Bacteriol 1985, 162(2):799-803. 51. Bäumler AJ, Tsolis RM, Heffron F: Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect Immun 1996, 64(5):1862-1865. 52. Althouse C, Patterson S, Fedorka Cray P, Isaacson RE: Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 2003, 71(11):6446-6452. 53. Korhonen TK, Lounatmaa K, Ranta H, Kuusi N: Characterization of type 1 pili of Salmonella typhimurium LT2. J Bacteriol 1980, 144(2):800-805. 54. Duguid JP, Anderson ES, Campbell I: Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 1966, 92(1):107-137. 55. Tavendale A, Jardine CKH, Old DC, Duguid JP: Haemagglutinins and adhesion of Salmonella typhimurium to HEp2 and HeLa cells. J Med Microbiol 1983, 16(3):371-380. 56. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Häner M, Taschner N, Burkhard P, Aebi U, Müller SA: Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 2002, 323(5):845-857. 57. Gossert AD, Bettendorff P, Puorger C, Vetsch M, Herrmann T, Glockshuber R, Wüthrich K: NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. J Mol Biol 2008, 375(3):752-763. 58. Alonso Caballero A, Schönfelder J, Poly S, Corsetti F, De Sancho D, Artacho E, Perez Jimenez R: Mechanical architecture and folding of E. coli type 1 pilus domains. Nat Commun 2018, 9(1):2758. 59. Le Trong I, Aprikian P, Kidd BA, Thomas WE, Sokurenko EV, Stenkamp RE: Donor strand exchange and conformational changes during E. coli fimbrial formation. J Struct Biol 2010, 172(3):380-388. 60. Zeiner SA, Dwyer BE, Clegg S: FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect Immun 2012, 80(9):3289-3296. 61. Mulvey MA, Lopez Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ: Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 1998, 282(5393):1494-1497. 62. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ: Type 1 pilus‐mediated bacterial invasion of bladder epithelial cells. EMBO J 2000, 19(12):2803-2812. 63. Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS: FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2014, 169(7-8):496-503. 64. Clegg S, Hughes KT: FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 2002, 184(4):1209-1213. 65. Zeiner SA, Dwyer BE, Clegg S: FimY does not interfere with FimZ-FimW interaction during type 1 fimbria production by Salmonella enterica serovar Typhimurium. Infect Immun 2013, 81(12):4453-4460. 66. Wang KC, Hsu YH, Huang YN, Yeh KS: A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012, 12(1):111. 67. Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL: YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLoS One 2013, 8(7):e66740. 68. Authority EFS: Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs, in the EU, 2006–2007‐Part A: Salmonella prevalence estimates. EFSA Journal 2008, 6(6):135r. 69. Shieh HK: The FMD situation in Taiwan. J Chin Soc Vet Sci 1997, 23:395-402. 70. Yeh KS, Tsai CE, Chen SP, Lin JS, Dong HD, Du SJ: A survey on microorganisms isolated from the body surface of pork carcasses in slaughterhouses in Taiwan from 2000 to 2002. Taiwan Vet J 2004, 30:64-76. 71. Yeh KS, Chen SP, Lin JH: One-year (2003) nationwide pork carcass microbiological baseline data survey in Taiwan. J Food Prot 2005, 68(3):458-461. 72. McEwen SA, Fedorka-Cray PJ: Antimicrobial use and resistance in animals. Clin Infect Dis 2002, 34(Supplement_3):S93-S106. 73. Kramer TT, Roof MB, Matheson RR: Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine. Am J Vet Res 1992, 53(4):444-448. 74. Weide Botjes M, Liebisch B, Schwarz S, Watts JL: Molecular characterization of Salmonella enterica subsp. enterica serovar choleraesuis field isolates and differentiation from homologous live vaccine strains suisaloral and SC-54. J Clin Microbiol 1996, 34(10):2460-2463. 75. Engels EA, Falagas ME, Lau J, Bennish ML: Typhoid fever vaccines: a meta-analysis of studies on efficacy and toxicity. BMJ 1998, 316(7125):110-116. 76. Germanier R, Fiirer E: Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 1975, 131(5):553-558. 77. Kantele A, Pakkanen SH, Siitonen A, Karttunen R, Kantele JM: Live oral typhoid vaccine Salmonella Typhi Ty21a–a surrogate vaccine against non-typhoid salmonella? Vaccine 2012, 30(50):7238-7245. 78. Poolman J, Borrow R: Hyporesponsiveness and its clinical implications after vaccination with polysaccharide or glycoconjugate vaccines. Expert Rev Vaccines 2011, 10(3):307-322. 79. MacLennan CA, Martin LB, Micoli F: Vaccines against invasive Salmonella disease: current status and future directions. Hum Vaccin Immunother 2014, 10(6):1478-1493. 80. Scorza FB, Colucci AM, Maggiore L, Sanzone S, Rossi O, Ferlenghi I, Pesce I, Caboni M, Norais N, Di Cioccio V: High yield production process for Shigella outer membrane particles. PLoS One 2012, 7(6):e35616. 81. MacLennan CA: Vaccines for low-income countries. In: Semin Immunol: 2013. Elsevier: 114-123. 82. Liu Q, Yi J, Liang K, Zhang X, Liu Q: Salmonella Choleraesuis outer membrane vesicles: Proteomics and immunogenicity. J Basic Microbiol 2017, 57(10):852-861. 83. Erova TE, Kirtley ML, Fitts EC, Ponnusamy D, Baze WB, Andersson JA, Cong Y, Tiner BL, Sha J, Chopra AK: Protective immunity elicited by oral immunization of mice with Salmonella enterica serovar Typhimurium braun lipoprotein (Lpp) and acetyltransferase (MsbB) mutants. Front Cell Infect Microbiol 2016, 6:148. 84. Hoiseth SK, Stocker BAD: Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nat Rev Microbiol 1981, 291(5812):238-239. 85. Felgner S, Frahm M, Kocijancic D, Rohde M, Eckweiler D, Bielecka A, Bueno E, Cava F, Abraham WR, Curtiss R: aroA-deficient Salmonella enterica serovar Typhimurium is more than a metabolically attenuated mutant. MBio 2016, 7(5):e01220-01216. 86. Galán JE, Curtiss III R: Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb Pathog 1989, 6(6):433-443. 87. Tennant SM, Wang JY, Galen JE, Simon R, Pasetti MF, Gat O, Levine MM: Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains. Infect Immun 2011, 79(10):4175-4185. 88. Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem Maghami M, Sexton A, Khan M, Brennan FR: Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 2002, 70(7):3457-3467. 89. Curtiss R, Kelly SM: Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun 1987, 55(12):3035-3043. 90. Pascual DW, Suo Z, Cao L, Avci R, Yang X: Attenuating gene expression (AGE) for vaccine development. Virulence 2013, 4(5):384-390. 91. Yang XH, Thornburg T, Suo ZY, Jun SM, Robison A, Li JQ, Lim T, Cao L, Hoyt T, Avci R: Flagella overexpression attenuates Salmonella pathogenesis. PLoS One 2012, 7(10):e46828. 92. Yang XH, Suo ZY, Thornburg T, Holderness K, Cao L, Lim T, Walters N, Kellerman L, Loetterle L, Avci R: Expression of Escherichia coli virulence usher protein attenuates wild-type Salmonella. Virulence 2012, 3(1):29-42. 93. Cao L, Lim T, Jun S, Thornburg T, Avci R, Yang X: Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector. PLoS One 2012, 7(4):e36283. 94. Wu KH, Wang KC, Lee LW, Huang YN, Yeh KS: A constitutively mannose-sensitive agglutinating Salmonella enterica subsp. enterica serovar Typhimurium strain, carrying a transposon in the fimbrial usher gene stbC, exhibits multidrug resistance and flagellated phenotypes. ScientificWorldJournal. 2012, 2012:10. 95. Yeh KS, Tinker JK, Clegg S: FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 2002, 46(1):1-10. 96. Ramos Morales F, Prieto AI, Beuzón CR, Holden DW, Casadesús J: Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J Bacteriol 2003, 185(17):5328-5332. 97. Glick BR: Metabolic load and heterologous gene expression. Biotechnol Adv 1995, 13(2):247-261. 98. Douglass II WC: Hydrogen peroxide-medical miracle: BookBaby; 2003. 99. Chang CH: FimZ of Salmonella enterica serovar typhimurium may mediate different physiological functions. Master Thesis. Department Institute of Veterinary Medicine, National Taiwan University; 2017. 100. Merritt ME, Donaldson JR: Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 2009, 58(12):1533-1541. 101. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR: Secretion of curli fibre subunits is mediated by the outer membrane‐localized CsgG protein. Mol Microbiol 2006, 59(3):870-881. 102. Sikora AE, Lybarger SR, Sandkvist M: Compromised outer membrane integrity in Vibrio cholerae type II secretion mutants. J Bacteriol 2007, 189(23):8484-8495. 103. Hancock REW: Peptide antibiotics. The lancet 1997, 349(9049):418-422. 104. Prouty AM, Van Velkinburgh JC, Gunn JS: Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J Bacteriol 2002, 184(5):1270-1276. 105. Leduc M, van Heijenoort J: Autolysis of Escherichia coli. J Bacteriol 1980, 142(1):52-59. 106. Britten RJ, McClure FT: The amino acid pool in Escherichia coli. Bacteriol Rev 1962, 26(3):292. 107. Haraga A, Ohlson MB, Miller SI: Salmonellae interplay with host cells. Nat Rev Microbiol 2008, 6(1):53-66. 108. Sansonetti PJ: War and peace at mucosal surfaces. Nat Rev Immunol 2004, 4(12):953-964. 109. Cencič A, Langerholc T: Functional cell models of the gut and their applications in food microbiology — a review. Int J Food Microbiol 2010, 141:S4-S14. 110. Zweibaum A, Laburthe M, Grasset E, Louvard D: Use of cultured cell lines in studies of intestinal cell differentiation and function. In: Comprehensive Physiology. 2011: 223-255. 111. Bermudez Brito M, Plaza Díaz J, Fontana L, Muñoz Quezada S, Gil A: In vitro cell and tissue models for studying host–microbe interactions: a review. Br J Nutr 2013, 109(S2):S27-S34. 112. Gagnon M, Zihler Berner A, Chervet N, Chassard C, Lacroix C: Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods 2013, 94(3):274-279. 113. Pinto M: Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983, 47:323-330. 114. Rousset M: The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie 1986, 68(9):1035-1040. 115. Freitag CM, Strijbis K, van Putten JPM: Host cell binding of the flagellar tip protein of Campylobacter jejuni. Cell Microbiol 2017, 19(6):e12714. 116. Bullas LR, Ryu J: Salmonella typhimurium LT2 strains which are r-m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 1983, 156(1):471-474. 117. Liu ZF: Characterization of the role that fimW plays in the type1 fimbrial regulatory system in Salmonella enterica serovar Typhimurium. Master Thesis. Department Institute of Veterinary Medicine, National Taiwan University; 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66393 | - |
| dc.description.abstract | 沙門氏菌是一種人畜共通傳染病原,它可以感染人類以及包括溫血和冷血在內的多種動物。沙門氏菌造成的感染在全世界的畜牧業中造成相當大的損失。目前,從環境中消除沙門氏菌是不切實際和無法實現的。良好的飼養管理和疫苗接種計劃是減輕動物感染沙門氏菌症臨床症狀的較佳策略。目前已經開發了數種沙門氏菌疫苗類型。最常見的是通過剔除毒力基因來降低沙門氏菌的致病力,製成減毒的活菌疫苗,其中有些疫苗已經有商品化的產品。最近報導了另一種減毒的方法,稱之為減弱基因表達 (attenuating gene expression, AGE) 的方法,該方法是利用過度表現細菌表面的附屬物來減弱細菌的毒力。第一型線毛是沙門氏菌的主要表面附屬物之一。我們的實驗室已經構建了數個基因缺失的鼠傷寒沙門氏菌 (Salmonella Typhimurium) 菌株,從而產生了會持續表現第一型線毛和不表現線毛的菌株。本研究的目的是比較這些菌株的毒力,以評估其作為減毒疫苗菌株的可行性。來自鼠傷寒沙門氏菌LB5010的fimZ和fimY缺失菌株是不產生線毛的,而fimW、stm0551和stbC缺失菌株是會產生線毛的。研究方法藉由量測菌株的生長速率、對膽鹽和H2O2的敏感性、使用紅黴素或多粘菌素B來檢測菌株細胞膜的穩定性、對低滲透壓的抗性以及細胞吸附和入侵能力來評估上述菌株的毒力。本研究結果顯示,與其他菌株相比,fimY缺失菌株表現出較慢的生長速率。fimY和stbC缺失菌株在含膽鹽的培養基中顯示出較低的存活率。fimY和stm0551缺失菌株在含有H2O2的環境下顯示出較低的存活率。fimZ和fimW缺失菌株對於多粘菌素B均顯示出較低的最低抑菌濃度,表明它們的細胞膜不如LB5010菌株來得穩定。與其他菌株相比,fimY和stm0551缺失菌株在低滲透壓環境中抵抗力較弱,而fimZ和stm0551缺失菌株在PBS環境中對滲透壓的抵抗力較弱。在細胞吸附試驗中,fimY缺失菌株顯示出較弱的吸附能力,而在Caco-2細胞入侵試驗中,fimY缺失菌株也顯示出較弱的入侵能力。由此可知,fimY缺失菌株在各種生理試驗中均顯示弱毒性。將來我們可以進一步評估fimY缺失菌株作為減毒疫苗的可行性。 | zh_TW |
| dc.description.abstract | Salmonella is a zoonotic pathogen and it can infect humans as well as a variety of animals, including warm- and cold-blooded. Salmonella infections in farm animals cause considerable losses in the livestock industry worldwide. Eradication of Salmonella from environment is currently impractical and unattainable. Good husbandry management coupled with vaccination programs is a better strategy to reduce the clinical symptoms of salmonellosis in animals. Several Salmonella vaccines types have been developed. To attenuate Salmonella by deleting virulence genes to develop attenuated vaccines is commonly practiced and some of them are commercially available. Another approach, attenuating gene expression (AGE), attenuates bacterial pathogens through overexpression of bacterial surface appendages had been recently reported. The type 1 fimbriae are one of the major surface appendages of Salmonella. Previously our laboratory has constructed several gene-deleted Salmonella Typhimurium strains, resulting in constitutively type 1 fimbriated and non-fimbriated strains. The objective of this study is aimed to compare the virulence of these strains to evaluate their feasibility to serve as attenuated vaccine strains. The fimZ and the fimY deleted strains derived from S. Typhimurium LB5010 are non-fimbriated, while the fimW, stm0551, and stbC deleted strains are fimbriated. Growth rate, susceptibility to bile salt and H2O2, membrane stability tests using erythromycin or polymyxin B, resistance to low osmotic pressure and cell adhesion and invasion assays were employed to assess the virulence of the aforementioned strains. Our results indicated that the fimY deleted strain exhibited a decreased growth rate compared with other strains. The fimY and the stbC deleted strains demonstrated a lower survival rate in the medium containing bile salt. The fimY and the stm0551 deleted strains showed lower survival rates in an environment containing H2O2. Both the fimZ and the fimW deleted strains exhibited a lower minimum inhibitory concentration (MIC) for polymyxin B, suggesting their membranes being less stable than that of the parental LB5010 strain. The fimY and the stm0551 deleted strains are less resistant to osmotic pressure in the H2O environment compared to other strains, while the fimZ and the stm0551 deleted strain are less resistant to osmotic pressure in the PBS environment. The fimY deleted strain revealed a poor adhesion and invasion ability to the Caco-2 cells. Thus, the fimY deleted strain demonstrated itself a less virulent strain in several physiological function tests. In the future, we can further evaluate the feasibility of using the fimY deleted strain as an attenuated vaccine strain. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:33:37Z (GMT). No. of bitstreams: 1 ntu-109-R06629009-1.pdf: 2790118 bytes, checksum: 6af81dceeee5510b5566d8b35d5cd9ff (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II 英文摘要 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 第一節 沙門氏菌 3 1-1 沙門氏菌的型態 3 1-2 沙門氏菌的分類 3 1-3 沙門氏菌的流行病學 4 1-4 沙門氏菌的生化特性 6 1-5 沙門氏菌的致病機制 6 第二節 第一型線毛 8 2-1 沙門氏菌線毛的型態與作用 8 2-2 沙門氏菌的第一型線毛 9 2-3 第一型線毛的結構與調控機制 10 第三節 沙門氏菌疫苗 12 3-1 疫苗的重要性 12 3-2 沙門氏菌疫苗的種類 13 第二章 材料與方法 18 第一節 菌株培養 18 第二節 穿透式電子顯微鏡觀察 18 第三節 酵母菌凝集試驗 18 第四節 細菌總RNA (total RNA) 的萃取 19 第五節 反轉錄聚合酶連鎖反應 (reverse transcription-PCR, RT-PCR) 20 第六節 細菌生長曲線的測定 20 第七節 對膽鹽 (bile salt) 的敏感性試驗 20 第八節 對H2O2的敏感性試驗 20 第九節 外膜的通透性改變-藥物敏感性試驗 21 第十節 滲透壓耐受性試驗 21 第十一節 細胞黏附及入侵試驗 21 11-1 細胞解凍及繼代 21 11-2 細胞黏附試驗 22 11-3 細胞入侵試驗 22 第三章 結果 23 第一節 穿透式電子顯微鏡觀察S. Typhimurium LB5010與基因剔除菌株在不同培養環境下對於第一型線毛表現的影響 23 第二節 利用酵母菌凝集試驗比較S. Typhimurium LB5010與基因剔除菌株在不同培養環境下對於第一型線毛的表現 23 第三節 利用反轉錄聚合酶連鎖反應檢測S. Typhimurium LB5010與基因剔除菌株fimA基因的表現量 24 第四節 比較S. Typhimurium LB5010與基因剔除菌株生長情形 24 第五節 S. Typhimurium LB5010與基因剔除菌株對膽鹽的敏感性試驗 24 第六節 S. Typhimurium LB5010與基因剔除菌株對H2O2的敏感性試驗 25 第七節 利用藥物敏感性試驗檢測S. Typhimurium LB5010與基因剔除菌株外膜通透性的改變 25 第八節 檢測S. Typhimurium LB5010與基因剔除菌株對低滲透壓的耐受性 25 第九節 S. Typhimurium LB5010與基因剔除菌株對於Caco-2 cells的吸附與入侵能力 26 第四章 討論 27 第五章 結論 32 參考文獻 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | fim 基因組 | zh_TW |
| dc.subject | 第一型線毛 | zh_TW |
| dc.subject | 鼠傷寒沙門氏菌 | zh_TW |
| dc.subject | 基因缺失 | zh_TW |
| dc.subject | type 1 fimbriae | en |
| dc.subject | Salmonella Typhimurium | en |
| dc.subject | gene deletion | en |
| dc.subject | fim gene cluster | en |
| dc.title | 持續表現與不表現第一型線毛的鼠傷寒沙門氏菌株不同生理功能之比較 | zh_TW |
| dc.title | Comparison of the different physiological functions of the constitutively type 1 fimbriated and non-fimbriated Salmonella Typhimurium strains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宣詩玲(Shih-Ling Hsuan),鄭益謙(Ivan-Chen Cheng) | |
| dc.subject.keyword | 鼠傷寒沙門氏菌,第一型線毛,基因缺失,fim 基因組, | zh_TW |
| dc.subject.keyword | Salmonella Typhimurium,type 1 fimbriae,gene deletion,fim gene cluster, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202000375 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-07 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 2.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
