Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66378
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳益祥
dc.contributor.authorJiun-Yi Lien
dc.contributor.author李君儀zh_TW
dc.date.accessioned2021-06-17T00:32:54Z-
dc.date.available2012-03-02
dc.date.copyright2012-03-02
dc.date.issued2012
dc.date.submitted2012-02-09
dc.identifier.citationAicher, A., C. Heeschen, et al. (2003). 'Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells.' Nat Med 9(11): 1370-1376.
Asahara, T., A. Kawamoto, et al. (2011). 'Concise Review: Circulating Endothelial Progenitor Cells for Vascular Medicine.' Stem Cells 29(11): 1650-1655.
Asahara, T., H. Masuda, et al. (1999). 'Bone Marrow Origin of Endothelial Progenitor Cells Responsible for Postnatal Vasculogenesis in Physiological and Pathological Neovascularization.' Circ Res 85(3): 221-228.
Asahara, T., T. Murohara, et al. (1997). 'Isolation of putative progenitor endothelial cells for angiogenesis.' Science 275(5302): 964-967.
Asahara, T., T. Takahashi, et al. (1999). 'VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.' EMBO J 18(14): 3964-3972.
Baeuerle, P. (1998). 'IkappaB-NF-kappaB structures: at the interface of inflammation control.' Cell 95(6): 729-731.
Bar-Shavit, R., A. J. Kahn, et al. (1986). 'Identification of a thrombin sequence with growth factor activity on macrophages.' Proceedings of the National Academy of Sciences 83(4): 976-980.
Bardin, N., F. George, et al. (1996). 'S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen.' Tissue Antigens 48(5): 531-539.
Bartunek, J., M. Vanderheyden, et al. (2005). 'Intracoronary Injection of CD133-Positive Enriched Bone Marrow Progenitor Cells Promotes Cardiac Recovery After Recent Myocardial Infarction.' Circulation 112(9 suppl): I-178-I-183.
Bergers, G., R. Brekken, et al. (2000). 'Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis.' Nat Cell Biol 2(10): 737-744.
Bizios, R., L. Lai, et al. (1986). 'Thrombin-induced chemotaxis and aggregation of neutrophils.' J Cell Physiol 128(3): 485-490.
Boffa, M.-C. and M. Karmochkine (1998). 'Review : Thrombomodulin: an overview and potential implications in vascular disorders.' Lupus 7(2 suppl): S120-S125.
Boyle, A., R. Whitbourn, et al. (2006). 'Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up.' Int J Cardiol 109(1): 21-27.
Brueckmann, M., U. Hoffmann, et al. (2004). 'Drotrecogin alfa (activated) inhibits NF-kappa B activation and MIP-1-alpha release from isolated mononuclear cells of patients with severe sepsis.' Inflamm Res 53(10): 528-533.
Burt, R., A. Testori, et al. (2010). 'Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia.' Bone Marrow Transplant 45(1): 111-116.
Calnek, D. and B. Grinnell (1998). 'Thrombomodulin-dependent anticoagulant activity is regulated by vascular endothelial growth factor.' Exp Cell Res 238(1): 294-298.
Cheng, X. W., M. Kuzuya, et al. (2007). 'Mechanisms Underlying the Impairment of Ischemia-Induced Neovascularization in Matrix Metalloproteinase 2–Deficient Mice.' Circ Res 100(6): 904-913.
Comte, L., V. Lorgeot, et al. (1997). 'Effects of the angiotensin-converting enzyme inhibitor enalapril on blood haematopoietic progenitors and acetyl-N-Ser-Asp-Lys-Pro concentrations.' Eur J Clin Invest 27(9): 788-790.
Conway, E. (2011). 'Thrombomodulin and its role in inflammation.' Semin Immunopathol.
Conway, E. and P. Carmeliet (2004). 'The diversity of endothelial cells: a challenge for therapeutic angiogenesis.' Genome Biol 5(2): 207.
Conway, E. M. and R. D. Rosenberg (1988). 'Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells.' Molecular and Cellular Biology 8(12): 5588-5592.
Coughlin, S. (2000). 'Thrombin signalling and protease-activated receptors.' Nature 407(6801): 258-264.
Coughlin, S. and E. Camerer (2003). 'PARticipation in inflammation.' J Clin Invest 111(1): 25-27.
David-Dufilho, M., E. M.-V. Brussel, et al. (2005). 'Endothelial Thrombomodulin Induces Ca2+ Signals and Nitric Oxide Synthesis through Epidermal Growth Factor Receptor Kinase and Calmodulin Kinase II.' Journal of Biological Chemistry 280(43): 35999-36006.
de Munk, G., J. Parkinson, et al. (1993). 'Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin.' Biochem J 290 ( Pt 3): 655-659.
De Palma, M., M. A. Venneri, et al. (2003). 'Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells.' Nat Med 9(6): 789-795.
Decary, S., C. Hamida, et al. (2000). 'Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children.' Neuromuscul Disord 10(2): 113-120.
Dimmeler, S., A. Aicher, et al. (2001). 'HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway.' J Clin Invest 108(3): 391-397.
Eichmann, A., C. Corbel, et al. (1997). 'Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2.' Proceedings of the National Academy of Sciences 94(10): 5141-5146.
Engsig, M. T., Q.-J. Chen, et al. (2000). 'Matrix Metalloproteinase 9 and Vascular Endothelial Growth Factor Are Essential for Osteoclast Recruitment into Developing Long Bones.' The Journal of Cell Biology 151(4): 879-890.
Esmon, C. T. (1989). 'The roles of protein C and thrombomodulin in the regulation of blood coagulation.' Journal of Biological Chemistry 264(9): 4743-4746.
Fadini, G. P., S. V. de Kreutzenberg, et al. (2006). 'Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk.' European Heart Journal 27(18): 2247-2255.
Fadini, G. P., M. Miorin, et al. (2005). 'Circulating Endothelial Progenitor Cells Are Reduced in Peripheral Vascular Complications of Type 2 Diabetes Mellitus.' J Am Coll Cardiol 45(9): 1449-1457.
Gehling, U. M., S. Ergun, et al. (2000). 'In vitro differentiation of endothelial cells from AC133-positive progenitor cells.' Blood 95(10): 3106-3112.
George, A., P. Bangalore-Prakash, et al. (2011). 'Endothelial progenitor cell biology in disease and tissue regeneration.' J Hematol Oncol 4: 24.
Gill, M., S. Dias, et al. (2001). 'Vascular Trauma Induces Rapid but Transient Mobilization of VEGFR2+AC133+ Endothelial Precursor Cells.' Circ Res 88(2): 167-174.
Glusa, E. (1992). 'Vascular effects of thrombin.' Semin Thromb Hemost 18(3): 296-304.
Grey, S., A. Tsuchida, et al. (1994). 'Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester.' The Journal of Immunology 153(8): 3664-3672.
Gulati, R., D. Jevremovic, et al. (2003). 'Diverse origin and function of cells with endothelial phenotype obtained from adult human blood.' Circ Res 93(11): 1023-1025.
Hamada, H., H. Ishii, et al. (1995). 'The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells.' Blood 86(1): 225-233.
Hamaguchi, E., T. Takamura, et al. (2003). 'Tumor Necrosis Factor-α and Troglitazone Regulate Plasminogen Activator Inhibitor Type 1 Production through Extracellular Signal-Regulated Kinase- and Nuclear Factor-κB-Dependent Pathways in Cultured Human Umbilical Vein Endothelial Cells.' Journal of Pharmacology and Experimental Therapeutics 307(3): 987-994.
Hattori, K., S. Dias, et al. (2001). 'Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells.' The Journal of Experimental Medicine 193(9): 1005-1014.
He, T., T. E. Peterson, et al. (2005). 'Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8.' American Journal of Physiology - Heart and Circulatory Physiology 289(2): H968-H972.
Heeschen, C., A. Aicher, et al. (2003). 'Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization.' Blood 102(4): 1340-1346.
Heissig, B., K. Hattori, et al. (2002). 'Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand.' Cell 109(5): 625-637.
Hill, J., G. Zalos, et al. (2003). 'Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.' N Engl J Med 348(7): 593-600.
Hirose, K., K. Okajima, et al. (2000). 'Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation.' Ann Surg 232(2): 272-280.
Huang, P.-H., Y.-H. Chen, et al. (2009). 'Matrix Metalloproteinase-9 Is Essential for Ischemia-Induced Neovascularization by Modulating Bone Marrow–Derived Endothelial Progenitor Cells.' Arteriosclerosis, Thrombosis, and Vascular Biology 29(8): 1179-1184.
Hur, J., C.-H. Yoon, et al. (2004). 'Characterization of Two Types of Endothelial Progenitor Cells and Their Different Contributions to Neovasculogenesis.' Arterioscler Thromb Vasc Biol 24(2): 288-293.
Hur, J., C. Yoon, et al. (2007). 'Akt is a key modulator of endothelial progenitor cell trafficking in ischemic muscle.' Stem Cells 25(7): 1769-1778.
Ishii, H., H. Uchiyama, et al. (1991). 'Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells.' Thromb Haemost 65(5): 618-623.
Isner, J. M. and T. Asahara (1999). 'Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization.' J Clin Invest 103(9): 1231-1236.
Ito, H., I. I. Rovira, et al. (1999). 'Endothelial Progenitor Cells as Putative Targets for Angiostatin.' Cancer Research 59(23): 5875-5877.
Iwaguro, H., J.-i. Yamaguchi, et al. (2002). 'Endothelial Progenitor Cell Vascular Endothelial Growth Factor Gene Transfer for Vascular Regeneration.' Circulation 105(6): 732-738.
Iwasaki, H., A. Kawamoto, et al. (2006). 'Dose-Dependent Contribution of CD34-Positive Cell Transplantation to Concurrent Vasculogenesis and Cardiomyogenesis for Functional Regenerative Recovery After Myocardial Infarction.' Circulation 113(10): 1311-1325.
Jackson, D., T. Tetaz, et al. (1994). 'Purification and characterization of two forms of soluble thrombomodulin from human urine.' Eur J Biochem 221(3): 1079-1087.
Johnson, C., H.-J. Sung, et al. (2004). 'Matrix Metalloproteinase-9 Is Required for Adequate Angiogenic Revascularization of Ischemic Tissues.' Circ Res 94(2): 262-268.
Kalka, C., H. Masuda, et al. (2000). 'Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization.' Proceedings of the National Academy of Sciences 97(7): 3422-3427.
Kawamoto, A. and T. Asahara (2007). 'Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies.' Catheter Cardiovasc Interv 70(4): 477-484.
Kawamoto, A., M. Katayama, et al. (2009). 'Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial.' Stem Cells 27(11): 2857-2864.
Kocher, A., M. Schuster, et al. (2001). 'Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.' Nat Med 7(4): 430-436.
Koutsi, A., A. Papapanagiotou, et al. (2008). 'Thrombomodulin: from haemostasis to inflammation and tumourigenesis.' Int J Biochem Cell Biol 40(9): 1669-1673.
Koyama, T., J. Parkinson, et al. (1991). 'Different glycoforms of human thrombomodulin. Their glycosaminoglycan-dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III.' Eur J Biochem 198(3): 563-570.
Krankel, N., V. Adams, et al. (2005). 'Hyperglycemia Reduces Survival and Impairs Function of Circulating Blood-Derived Progenitor Cells.' Arteriosclerosis, Thrombosis, and Vascular Biology 25(4): 698-703.
Kucia, M., B. Dawn, et al. (2004). 'Cells Expressing Early Cardiac Markers Reside in the Bone Marrow and Are Mobilized Into the Peripheral Blood After Myocardial Infarction.' Circ Res 95(12): 1191-1199.
Kuroda, R., T. Matsumoto, et al. (2010). 'Local Transplantation of G-CSF-Mobilized CD34+ Cells in a Patient with Tibial Nonunion: A Case Report.' Cell Transplant.
Lambiase, P. D., R. J. Edwards, et al. (2004). 'Circulating Humoral Factors and Endothelial Progenitor Cells in Patients With Differing Coronary Collateral Support.' Circulation 109(24): 2986-2992.
Lenk, K., V. Adams, et al. (2005). 'Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia.' European Heart Journal 26(18): 1903-1909.
Levi, M., G. Choi, et al. (2004). 'Beyond sepsis: activated protein C and ischemia-reperfusion injury.' Crit Care Med 32(5 Suppl): S309-312.
Li, A., S. Dubey, et al. (2003). 'IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis.' The Journal of Immunology 170(6): 3369-3376.
Li, Y., G. Shi, et al. (2006). 'The role of thrombomodulin in atherosclerosis: from bench to bedside.' Cardiovasc Hematol Agents Med Chem 4(2): 183-187.
Li, Z., M. Zhang, et al. (2007). 'The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI).' Int J Cardiol 115(1): 52-56.
Light, D., C. Glaser, et al. (1999). 'The interaction of thrombomodulin with Ca2+.' Eur J Biochem 262(2): 522-533.
Lin, S. J., Y. H. Chen, et al. (2007). 'Pravastatin induces thrombomodulin expression in TNFalpha-treated human aortic endothelial cells by inhibiting Rac1 and Cdc42 translocation and activity.' J Cell Biochem 101(3): 642-653.
Lin, Y., D. Weisdorf, et al. (2000). 'Origins of circulating endothelial cells and endothelial outgrowth from blood.' J Clin Invest 105(1): 71-77.
Llevadot, J., S. Murasawa, et al. (2001). 'HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells.' J Clin Invest 108(3): 399-405.
Losordo, D. W., R. A. Schatz, et al. (2007). 'Intramyocardial Transplantation of Autologous CD34+ Stem Cells for Intractable Angina.' Circulation 115(25): 3165-3172.
Mohle, R., F. Bautz, et al. (1998). 'The Chemokine Receptor CXCR-4 Is Expressed on CD34+Hematopoietic Progenitors and Leukemic Cells and Mediates Transendothelial Migration Induced by Stromal Cell-Derived Factor-1.' Blood 91(12): 4523-4530.
Masuda, H. and T. Asahara (2003). 'Post-natal endothelial progenitor cells for neovascularization in tissue regeneration.' Cardiovascular Research 58(2): 390-398.
Minami, T., A. Sugiyama, et al. (2004). 'Thrombin and Phenotypic Modulation of the Endothelium.' Arteriosclerosis, Thrombosis, and Vascular Biology 24(1): 41-53.
Miraglia, S., W. Godfrey, et al. (1997). 'A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning.' Blood 90(12): 5013-5021.
Mizutani, A., K. Okajima, et al. (2000). 'Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation.' Blood 95(12): 3781-3787.
Nakashima, M., M. Kanamaru, et al. (1998). 'Pharmacokinetics and safety of a novel recombinant soluble human thrombomodulin, ART-123, in healthy male volunteers.' J Clin Pharmacol 38(1): 40-44.
Naldini, A., C. Bernini, et al. (2005). 'Thrombin-mediated IL-10 up-regulation involves protease-activated receptor (PAR)-1 expression in human mononuclear leukocytes.' Journal of Leukocyte Biology 78(3): 736-744.
Naldini, A., D. Carney, et al. (1993). 'Thrombin enhances T cell proliferative responses and cytokine production.' Cell Immunol 147(2): 367-377.
Naldini, A., A. Pucci, et al. (2002). 'Thrombin enhancement of interleukin-1 expression in mononuclear cells: involvement of proteinase-activated receptor-1.' Cytokine 20(5): 191-199.
Nishiyama, K., K. Takaji, et al. (2005). 'Id1 Gene Transfer Confers Angiogenic Property on Fully Differentiated Endothelial Cells and Contributes to Therapeutic Angiogenesis.' Circulation 112(18): 2840-2850.
Nowak, G., A. Karrar, et al. (2004). 'Expression of vascular endothelial growth factor receptor-2 or Tie-2 on peripheral blood cells defines functionally competent cell populations capable of reendothelialization.' Circulation 110(24): 3699-3707.
Olivot, J.-M., E. Estebanell, et al. (2001). 'Thrombomodulin Prolongs Thrombin-Induced Extracellular Signal–Regulated Kinase Phosphorylation and Nuclear Retention in Endothelial Cells.' Circ Res 88(7): 681-687.
Orlic, D., J. Kajstura, et al. (2001). 'Mobilized bone marrow cells repair the infarcted heart, improving function and survival.' Proc Natl Acad Sci U S A 98(18): 10344-10349.
Ozaki, T., C. Anas, et al. (2008). 'Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure.' Nephrol Dial Transplant 23(1): 110-119.
Parry, G. C. N. and N. Mackman (1995). 'Transcriptional Regulation of Tissue Factor Expression in Human Endothelial Cells.' Arteriosclerosis, Thrombosis, and Vascular Biology 15(5): 612-621.
Peichev, M., A. J. Naiyer, et al. (2000). 'Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors.' Blood 95(3): 952-958.
Rehman, J., J. Li, et al. (2003). 'Peripheral Blood “Endothelial Progenitor Cells” Are Derived From Monocyte/Macrophages and Secrete Angiogenic Growth Factors.' Circulation 107(8): 1164-1169.
Reyes, M., A. Dudek, et al. (2002). 'Origin of endothelial progenitors in human postnatal bone marrow.' J Clin Invest 109(3): 337-346.
Reyes, M., T. Lund, et al. (2001). 'Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.' Blood 98(9): 2615-2625.
Ribatti, D. (2007). 'The discovery of endothelial progenitor cells. An historical review.' Leuk Res 31(4): 439-444.
Riewald, M. and W. Ruf (2002). 'Orchestration of coagulation protease signaling by tissue factor.' Trends Cardiovasc Med 12(4): 149-154.
Risau, W. (1997). 'Mechanisms of angiogenesis.' Nature 386(6626): 671-674.
Rosenberg, R. D. and L. Lam (1979). 'Correlation between structure and function of heparin.' Proceedings of the National Academy of Sciences 76(3): 1218-1222.
Saito, H., I. Maruyama, et al. (2007). 'Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial.' J Thromb Haemost 5(1): 31-41.
Salomaa, V., C. Matei, et al. (1999). 'Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study.' Lancet 353(9166): 1729-1734.
Salomaa, V., C. Matei, et al. (2001). 'Cross-sectional association of soluble thrombomodulin with mild peripheral artery disease; the ARIC study. Atherosclerosis Risk in Communities.' Atherosclerosis 157(2): 309-314.
Salven, P., S. Mustjoki, et al. (2003). 'VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells.' Blood 101(1): 168-172.
Sato, T. N., Y. Qin, et al. (1993). 'Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system.' Proceedings of the National Academy of Sciences 90(20): 9355-9358.
Schatteman, G. C., H. D. Hanlon, et al. (2000). 'Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice.' J Clin Invest 106(4): 571-578.
Schnurch, H. and W. Risau (1993). 'Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage.' Development 119(3): 957-968.
Seale, P., A. Asakura, et al. (2001). 'The potential of muscle stem cells.' Dev Cell 1(3): 333-342.
Shi, C.-S., G.-Y. Shi, et al. (2005). 'Evidence of Human Thrombomodulin Domain as a Novel Angiogenic Factor.' Circulation 111(13): 1627-1636.
Shi, J., J. Wang, et al. (2003). 'Statins increase thrombomodulin expression and function in human endothelial cells by a nitric oxide-dependent mechanism and counteract tumor necrosis factor alpha-induced thrombomodulin downregulation.' Blood Coagul Fibrinolysis 14(6): 575-585.
Sohn, R. H., C. B. Deming, et al. (2005). 'Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B.' Blood 105(10): 3910-3917.
Solovey, A., L. Gui, et al. (2001). 'Identification and functional assessment of endothelial P1H12.' J Lab Clin Med 138(5): 322-331.
Sperry, J. L., C. B. Deming, et al. (2003). 'Wall Tension Is a Potent Negative Regulator of In Vivo Thrombomodulin Expression.' Circ Res 92(1): 41-47.
Srinivasan, J., S. Hu, et al. (1994). 'Thrombin-bound structure of an EGF subdomain from human thrombomodulin determined by transferred nuclear Overhauser effects.' Biochemistry 33(46): 13553-13560.
Stamm, C., H.-D. Kleine, et al. (2007). 'Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: Safety and efficacy studies.' J Thorac Cardiovasc Surg 133(3): 717-725.
Stamm, C., B. Westphal, et al. (2003). 'Autologous bone-marrow stem-cell transplantation for myocardial regeneration.' Lancet 361(9351): 45-46.
Steinhoff, M., J. Buddenkotte, et al. (2005). 'Proteinase-Activated Receptors: Transducers of Proteinase-Mediated Signaling in Inflammation and Immune Response.' Endocrine Reviews 26(1): 1-43.
Stephens, A. W., A. Siddiqui, et al. (1988). 'Site-directed mutagenesis of the reactive center (serine 394) of antithrombin III.' Journal of Biological Chemistry 263(31): 15849-15852.
Strehlow, K., N. Werner, et al. (2003). 'Estrogen Increases Bone Marrow–Derived Endothelial Progenitor Cell Production and Diminishes Neointima Formation.' Circulation 107(24): 3059-3065.
Sunderland, C., W. McMaster, et al. (1979). 'Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes.' Eur J Immunol 9(2): 155-159.
Suzuki, K., H. Kusumoto, et al. (1987). 'Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation.' EMBO J 6(7): 1891-1897.
Takahashi, T., C. Kalka, et al. (1999). 'Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization.' Nat Med 5(4): 434-438.
Takakura, N., X. L. Huang, et al. (1998). 'Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis.' Immunity 9(5): 677-686.
Tanaka, K. and M. Sata (2007). 'Therapeutic Application of Bone Marrow-derived Progenitor Cells for Vascular Diseases: Magicbullets Having the Good Without the Bad?' International Journal of Gerontology 1(1): 10-21.
Tatakis, D., C. Dolce, et al. (1989). 'Thrombin's effects on osteoblastic cells. I. Cytosolic calcium and phosphoinositides.' Biochem Biophys Res Commun 164(1): 119-127.
Taylor, F. B., D. J. Stearns-Kurosawa, et al. (2000). 'The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis.' Blood 95(5): 1680-1686.
Tepper, O. M., R. D. Galiano, et al. (2002). 'Human Endothelial Progenitor Cells From Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation Into Vascular Structures.' Circulation 106(22): 2781-2786.
Tohda, G., K. Oida, et al. (1998). 'Expression of Thrombomodulin in Atherosclerotic Lesions and Mitogenic Activity of Recombinant Thrombomodulin in Vascular Smooth Muscle Cells.' Arteriosclerosis, Thrombosis, and Vascular Biology 18(12): 1861-1869.
Urbich, C. and S. Dimmeler (2004). 'Endothelial Progenitor Cells: Functional Characterization.' Trends in Cardiovascular Medicine 14(8): 318-322.
Urbich, C., C. Heeschen, et al. (2003). 'Relevance of Monocytic Features for Neovascularization Capacity of Circulating Endothelial Progenitor Cells.' Circulation 108(20): 2511-2516.
Valgimigli, M., G. M. Rigolin, et al. (2004). 'CD34+ and Endothelial Progenitor Cells in Patients With Various Degrees of Congestive Heart Failure.' Circulation 110(10): 1209-1212.
Vasa, M., S. Fichtlscherer, et al. (2001). 'Number and Migratory Activity of Circulating Endothelial Progenitor Cells Inversely Correlate With Risk Factors for Coronary Artery Disease.' Circ Res 89(1): e1-e7.
Vittet, D., M. Prandini, et al. (1996). 'Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps.' Blood 88(9): 3424-3431.
Vu, T. H. and Z. Werb (2000). 'Matrix metalloproteinases: effectors of development and normal physiology.' Genes & Development 14(17): 2123-2133.
Walter, D. H., K. Rittig, et al. (2002). 'Statin Therapy Accelerates Reendothelialization.' Circulation 105(25): 3017-3024.
Wang, L., J. A. Bastarache, et al. (2007). 'Novel Role of the Human Alveolar Epithelium in Regulating Intra-Alveolar Coagulation.' American Journal of Respiratory Cell and Molecular Biology 36(4): 497-503.
Wang, W., M. Nagashima, et al. (2000). 'Elements of the Primary Structure of Thrombomodulin Required for Efficient Thrombin-activable Fibrinolysis Inhibitor Activation.' Journal of Biological Chemistry 275(30): 22942-22947.
Webster, C. and H. Blau (1990). 'Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy.' Somat Cell Mol Genet 16(6): 557-565.
Wong, G., J. M. Li, et al. (2008). 'Inhibition of experimental neointimal hyperplasia by recombinant human thrombomodulin coated ePTFE stent grafts.' J Vasc Surg 47(3): 608-615.
Wu, K. K., N. Aleksic, et al. (2003). 'Interaction between soluble thrombomodulin and intercellular adhesion molecule-1 in predicting risk of coronary heart disease.' Circulation 107(13): 1729-1732.
Yamaguchi, J.-i., K. F. Kusano, et al. (2003). 'Stromal Cell–Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization.' Circulation 107(9): 1322-1328.
Yamakawa, K., S. Fujimi, et al. (2011). 'Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study.' Crit Care 15(3): R123.
Yamamoto, S., T. Mizoguchi, et al. (1993). 'Urinary Thrombomodulin, Its Isolation and Characterization.' Journal of Biochemistry 113(4): 433-440.
Yin, A. H., S. Miraglia, et al. (1997). 'AC133, a novel marker for human hematopoietic stem and progenitor cells.' Blood 90(12): 5002-5012.
Yoon, C.-H., J. Hur, et al. (2005). 'Synergistic Neovascularization by Mixed Transplantation of Early Endothelial Progenitor Cells and Late Outgrowth Endothelial Cells.' Circulation 112(11): 1618-1627.
Yu, K., H. Morioka, et al. (1992). 'Transcriptional regulation of the thrombomodulin gene.' Journal of Biological Chemistry 267(32): 23237-23247.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66378-
dc.description.abstract在胚胎形成過程中,週邊血液與血管細胞有相近的位置及功能發展,這顯示存在了一個共同的來源─血管幹細胞。從人體週邊血液取得的血管母細胞,又稱為內皮起源細胞,在體外可以培養分化成為內皮細胞。內皮起源細胞能夠有效的幫助體內組織缺血時的血管新生,許多的研究都支持內皮起源細胞在組織血管新生中扮演這樣關鍵的角色,綜合許多的臨床試驗與臨床上的結果顯示,注射外源性的血管起源細胞可以促進血管再生並改善器官的功能。
凝血酶調節素是一種第一型穿膜醣蛋白,具有5個蛋白結構區域,分別是:凝集素相似區、重複表皮生長因子相似區、醣化區、穿膜區及尾部的細胞質區。凝血酶調節素是一被熟知的抗凝血分子,但後來的許多報告指出,凝血酶調節素也具有其他的生物功能,如促進細胞黏著、移行、增生及抗發炎。最近的研究檢視重組的凝血酶調節素各結構區域,指出凝血酶調節素第二合併第三結構區域(TMD23)能夠幫助血管新生。由於內皮起源細胞亦參與血管新生,這提高了人體的內皮起源細胞會表現並釋放凝血酶調節素來促進血管新生的可能性。
在這個研究中,將廣泛地探究早期內皮起源細胞處理TMD23後的變化,而生理學上血管新生的能力,會由建立後肢缺血動物模式評估。結果顯示,從週邊血單核球細胞培養的人類早期內皮起源細胞會表現凝血酶調節素,給予經培養的週邊血單核球細胞TMD23(100 ng/mL),會增加群落形成單元數量、趨化性移行力、基質金屬蛋白酶第九型活性及細胞介白素第八因子的分泌,但會降低腫瘤壞死因子─α的分泌;分析其訊息傳遞途徑顯示,TMD23會活化Akt激酶,而抑制PI3K-Akt途徑則限制了TMD23在群落形成單元數量、趨化性移行力、基質金屬蛋白酶第九型活性及細胞介白素第八因子與腫瘤壞死因子─α分泌的影響;後肢缺血模式中,經TMD23合併早期內皮起源細胞處理的小鼠,在血管結紮手術後21天的過程中,以雷射杜卜勒血流測定儀分析,有最佳的血流恢復結果,而單獨給予TMD23或注射早期內皮起源細胞的小鼠,則有次佳的恢復結果,未給予兩種處理中任一種的小鼠,結果最差,此外,而給予TMD23的小鼠,血液及組織中腫瘤壞死因子─α表現較低。
綜上所述,人體血液循環中的內皮起源細胞會表現並釋放凝血酶調節素,而外源性的TMD23會透過PI3K-Akt途徑強化早期內皮起源細胞的促血管新生能力,若同時給予TMD23及早期內皮起源細胞,可加強在缺血組織中內皮起源細胞的血管新生治療效用。
zh_TW
dc.description.abstractDuring embryogenesis, a close regional and functional development of peripheral blood and vascular cells suggest the existence of a common origin, the putative hemangioblast. Circulating angioblasts, so-called endothelial progenitor cells (EPC), from human peripheral blood which was able to differentiate in vitro into endothelial cells (EC). EPC significantly contributed to neoangiogenesis after tissue ischemia in vivo and multiple studies have confirmed the pivotal role of EPC in tissue angiogenesis. Accumulated preclinical and clinical data suggest that introduction of exogenous vascular progenitor cells promote vascularization and improve organ function.
Thrombomodulin (TM) is an type I transmembrane glycoprotein containing 5 distinct domains: an NH2-terminal lectin-like region (designated D1), a domain with 6 epidermal growth factor–like modules (D2), an glycosylation site–rich domain (D3), a transmembrane domain (D4), and a cytoplasmic tail domain (D5). TM is well known as a molecule to be an anticoagulant. Subsequent reports showed that TM has various biological roles, including contribution to cell adhesion, migration, proliferation, and anti-inflammation. Recent studies examining recombinant TM domains indicated that the TM domains 2 and 3 (TMD23) contributes to angiogenesis. Because EPCs also participate in angiogenesis, this raised the possibility that human EPCs may express and release TM to facilitate angiogenesis.
In this study, a comprehensive investigation on the behavior of early EPC under TMD23 treatment will be performed. The physiological outcomes in the capacity of angiogenesis will be evaluated by the animal model of hind-limb ischemia. Results showed that TM was expressed and released by human EPCs cultured from peripheral blood mononuclear cells (PBMCs). Addition of TMD23 (100 ng/mL) to the cultured PBMCs increased the colony-forming units, chemotactic motility, matrix metalloproteinase activity, and interleukin-8 secretion but decreased tumor necrosis factor-α (TNF-α) release. Analysis of the signal pathway showed that TMD23 activated Akt. Inhibition of phosphatidylinositol-3 kinase–Akt blocked the effects of TMD23 on chemotactic motility, matrix metalloproteinase-9, interleukin-8, and TNF-α. In hindlimb ischemia mice, laser Doppler perfusion imaging of the ischemic limb during the 21 days after arterial ligation showed that the perfusion recovered best with intraperitoneal infusion of TMD23 plus local injection of early EPCs, followed by either infusion of TMD23 or injection of the cells. Animals without either treatment had the worst results. Animals treated with TMD23 also had lower circulating and tissue levels of TNF-α. In conclusion, TM is expressed and released by human circulating EPCs. Exogenous TMD23 enhances the angiogenic potential of early EPCs in vitro through activation of phosphatidylinositol-3 kinase-Akt pathway. Coadministration of TMD23 plus early EPCs augments therapeutic angiogenesis of the EPCs in ischemic tissues.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:32:54Z (GMT). No. of bitstreams: 1
ntu-101-Q91421015-1.pdf: 8720122 bytes, checksum: cdb270e5274d632d8a7428eeb47b54d8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents第一章 緒論 1
1.1前言 1
1.2 內皮起源細胞其於生物學血管醫學之現況 2
1.2.1 內皮起源細胞的分離與鑑定 2
1.2.2 鑑定骨髓多向分化濳能起源細胞(BONE MARROW DERIVED MULTIPOTENT PROGENITOR CELLS, MAPC) 4
1.2.3 單核球/巨噬細胞其為內皮起源細胞的來源 4
1.2.4 CD34陽性細胞其為內皮起源細胞之源由與應用性 5
1.2.5 內皮起源細胞於血管新生過程之正向與負向調控因子 6
1.2.6 現行內皮起源細胞研究所用之活體動物模式 6
1.2.7 內皮起源細胞與血管危險因子及血管併發症間之關聯性 7
1.2.8 內皮起源細胞治療潛力之臨床應用與價值 9
1.2.9 使用內皮起源細胞治療缺血性疾病之現況 10
1.3 凝血酶調節素(THROMBOMODULIN)之生物功能─從凝血機制到發炎反應之調控 11
1.3.1 凝血酶調節素的基本介紹 11
1.3.2 凝血酶調節素的結構特性 11
1.3.3 凝血酶調節素其表現調控因子及與發炎反應之關聯 13
1.3.4 凝血酶調節素與發炎反應之關聯 14
1.4 本研究設計架構 15
第二章 凝血酶調節素對早期內皮起源細胞之細胞效應─以試管內實驗探討其作用與機制 17
2.1 背景 17
2.2 實驗試劑列表 17
2.3實驗儀器軟體列表 21
2.4 材料與方法 21
2.5結果 27
第三章 凝血酶調節素及早期內皮起源細胞治療潛力的評估─以後肢缺血動物模式進行肢體外觀與功能、發炎反應、細胞組成分析及組織學的全方面評估 30
3.1 背景 30
3.2 實驗試劑列表 30
3.3 實驗儀器軟體列表 31
3.4 材料與方法 32
3.5 結果 35
第四章 討論 39
第五章 展望 48
論文英文簡述 51
結果圖 61
結果表 89
參考文獻 90
dc.language.isozh-TW
dc.subject磷脂醯肌醇激&#37238zh_TW
dc.subject內皮細胞zh_TW
dc.subject週邊血單核球細胞zh_TW
dc.subject凝血&#37238zh_TW
dc.subject調節素zh_TW
dc.subject腫瘤壞死因子─αzh_TW
dc.subject基質金屬蛋白zh_TW
dc.subjectendothelial progenitor cellen
dc.subjectPhosphatidylinositol-3 kinaseen
dc.subjectmatrix metalloproteinaseen
dc.subjecttumor necrosis factor-αen
dc.subjectthrombomodulinen
dc.subjectperipheral blood mononuclear cellen
dc.title凝血酶調節素對早期內皮起源細胞治療能力之益處–機制與應用zh_TW
dc.titleBeneficial Effects of Thrombomodulin on the Therapeutic Potential of Early Endothelial Progenitor Cells – Mechanism and Applicationen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.coadvisor楊偉勛
dc.contributor.oralexamcommittee葉宏一,陳肇文,虞希禹
dc.subject.keyword內皮細胞,週邊血單核球細胞,凝血&#37238,調節素,腫瘤壞死因子─α,基質金屬蛋白,磷脂醯肌醇激&#37238,zh_TW
dc.subject.keywordendothelial progenitor cell,peripheral blood mononuclear cell,thrombomodulin,tumor necrosis factor-α,matrix metalloproteinase,Phosphatidylinositol-3 kinase,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2012-02-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved