請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66357
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章(Soo-Chang Pei) | |
dc.contributor.author | Chao-Yung Hsu | en |
dc.contributor.author | 許朝詠 | zh_TW |
dc.date.accessioned | 2021-06-17T00:31:48Z | - |
dc.date.available | 2015-03-19 | |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-10 | |
dc.identifier.citation | [1] C. B. Atkins, T. J. Flohr, D. P. Hilgenberg, C. A. Bouman, and J. P. Allebach. Model-
based color image sequence quantization. In Proc. IS&T/SPIE Conf. Human Vision, Visual Processing, and Digital Display V, volume 2179, pages 310–317, 1994. [2] O. C. Au, M. S. Fu, H. W. Wong, W. C. Wong, , and Zihua Guo. Hybrid inverse halftoning using adaptive filtering. In Proceedings of IEEE International Symposium on Circuits and Systems, volume 4, pages 259–262, 1999. [3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In ECCV, pages 404–417, 2006. [4] S. Bhattacharjee and M. Kutter. Compression tolerant image authentication. In IEEE ICIP, 1998. [5] E. J. Candes and M. B. Wakin. An introduction to compressive sampling. In IEEE Signal Processing Magazine, volume 25, 2008. [6] H. W. Chen, C. S. Lu, and S. C. Pei. Fast compressive sensing recovery with transform-based sampling. In Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations, 2011. [7] O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: Finding a (thick) needle in a haystack. In IEEE CVPR, pages 17–24, 2009. [8] I. Damgard, M. Geisler, and M. Kroigard. Homomorphic encryption and secure comparison. Int. Journal of Applied Cryptography, 1(1):22–31, 2008. [9] T. T. Do, E. Kijak, T. Furon, and L. Amsaleg. Deluding image recognition in siftbased cbir systems. In Proceedings of the ACM workshop on Multimedia in forensics, pages 7–12, 2010. [10] T. T. Do, E. Kijak, T. Furon, and L. Amsaleg. Understanding the security and robustness of sift. In ACM MM, pages 1195–1198, 2010. [11] E-Ink. http://www.eink.com. [12] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and Tomas Toft. Privacy-preserving face recognition. In PETS, LNCS 5672, pages 235–253, 2009. [13] Z. Erkin, A. Piva, S. Katzenbeisser, R. L. Lagendijk, J. Shokrollahi, G. Neven, and M. Barni. Protection and retrieval of encrypted multimedia content: When cryptography meets signal processing. EURASIP Journal on Information Security, 7(2):1– 20, 2007. [14] FlePia. http://www.frontech.fujitsu.com/services/products/ paper/flepia/. [15] R. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale. In Proc. Soc. Inf. Display, volume 17, pages 75–77, 1976. [16] J. J. Foo, J. Zobel, R. Sinha, and S. Tahaghoghi. Detection of near-duplicate images for web search. In CIVR, pages 00–11, 2007. [17] R. E. Fredericksen and R. F. Hess. Estimating multiple temporal mechanism in human vision. In Vision Research, volume 38, pages 1023–1040, 1998. [18] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009. [19] J. Gille, J. Luszcz, , and J. O. Larimer. Improving the appearance of flat-panel displays using multilevel color error diffusion. In Proc. SPIE/IST Conf. Human Vision and Electronic Imaging, volume 3016, pages 154–167, 1997. [20] C. Gotsman. Halftoning of image sequence. In Vis. Comput., volume 9, pages 255–266, 1993. [21] K. Grauman and T. Darrell. Efficient image matching with distributions of local invariant features. In CVPR, pages 627–634, 2005. [22] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. In Technical Report. California Institute of Technology, 2007. [23] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey Vision Conference, 1988. [24] H. Hild and M. Pins. A 3-d error diffusion dither algorithm for half-tone animation on bitmap screens. In State-of-the-Art in Computer Animation-Proceedings of Computer Animation, pages 181–190, 1989. [25] D. P. Hilgenberg, T. J. Flohr, C. B. Atkins, J. P. Allebach, and C.A. Bouman. In Proc. SPIE/IST Conf. Human Vision, Visual Processing, and Digital Display V, volume 2179, pages 7–11, 1994. [26] HITACHI. http://www.hitachi.com. [27] C. Y. Hsu, C. S. Lu, and S. C. Pei. Compression of halftone video for electronic paper. In Proc. IEEE Int. Conf. on Image Processing, pages 1600–1603, 2008. [28] C. Y. Hsu, C. S. Lu, and S. C. Pei. Secure and robust sift. In ACM MM, 2009. [29] C. Y. Hsu, C. S. Lu, and S. C. Pei. Homomorphic encryption-based secure sift for privacy-preserving feature extraction. In Proc. IS&T/SPIE Media Watermarking, Forensics, and Security, 2011. [30] ImageNet. http://www.image-net.org/. [31] H. R. Kang. Digital color halftoning. New York: SPIE/IEEE Press, 1999. [32] L.W. Kang and C. S. Lu. Compressive sensing-based image hashing. In Proc. IEEE Int. Conf. on Image Processing, pages 1285–1289, 2009. [33] Y. Ke, R. Sukthankar, and L. Huston. Efficient near-duplicate and sub-image retrieval. In ACM MM, pages 869–876, 2004. [34] E. Kijak, T. Furon, and L. Amsaleg. Challenging the security of cbir system. In Research Report RR-7153, INRIA, 2009. [35] D. E. Knuth. Digital halftones by dot diffusion. ACM Trans. on Graphics, 6(4):245– 273, 1987. [36] J. Krizaj, V. Struc, and N. Pavesic. Adaptation of sift features for robust face recognition. In Proc. Int. Conf. on Image Analysis and Recognition, LNCS 6111, pages 394–404, 2010. [37] J. Laird, M. Rosen, E. Montag J. Pelz, and S. Daly. Spatio-velocity csf as a function of retinal velocity using unstabilized stimuli. In Proc. SPIE/IST Conf. Human Vision and Electronic Imaging II, volume 6057, pages 605705:1–11, 2006. [38] D. L. Lau and G. R. Arce. Modern digital halftoning. Marcel Dekker, 1978. [39] LG. http://www.lgdisplay.com/. [40] F. F. Li, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In IEEE CVPR Workshop on Generative-Model Based Vision, pages 178–178, 2004. [41] LIACS-MediaLab. mirflickr. http://medialab.liacs.nl/mirflickr/. [42] D. C. Lou and C. L. Wu. Parallel exponentiation using common-multiplicandmultiplication and signed-digit-folding techniques. International Journal of Computer Mathematics, 81(10):1187–1202, 2004. [43] D. Lowe. Distinctive image features from scale invariant keypoints. Int. Journal of Computer Vision, 60(2):91–110, 2004. [44] C. S. Lu and C. Y Hsu. Geometric distortion-resilient image hashing scheme and its applications on copy detection and authentication. In ACM Multimedia Systems Journal, special issue on Multimedia and Security, volume 11, pages 159–173, 2005. [45] C. S. Lu, S. W. Sun, C. Y. Hsu, and P. C. Chang. Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection. In IEEE Trans. on Multimedia, volume 8, pages 668–685, 2006. [46] W. Lu, A. Swaminathan, A. L. Varna, and M. Wu. Enabling search over encrypted multimedia databases. In SPIE Conference on Media Forensics and Security, pages 1–11, 2009. [47] W. Lu, A. L. Varna, A. Swaminathan, and M. Wu. Secure image retrieval through feature protection. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1533–1536, 2009. [48] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In ECCV, pages 128–142, 2002. [49] B. Moskovich and M. Osadchy. Illumination invariant representation for privacy preserving face identification. In IEEE Computer Vision and Pattern Recognition Workshop, pages 154–161, 2010. [50] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt, LNCS 1592, pages 223–238, 1999. [51] Unsang Park, Sharath Pankanti, and A. K. Jain. Fingerprint verification using sift features. In Proc. SPIE Defense and Security Symposium, Vol. 6944, pages 69440K1–69440K9, 2008. [52] F. Petitcolas, R. J. Anderson, and M. G. Kuhn. Attacks on copyright marking systems. In Int. Workshop on Information Hiding, LNCS 1575, pages 218–238, 1998. [53] A. Rezai and P. Keshavarzi. High-performance modular exponentiation algorithm by using a new modified modular multiplication algorithm and common-multiplicandmultiplication method. In 2011 World Congress on Internet Security (WorldCIS), pages 192 – 197, 2011. [54] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978. [55] J. Rovamo, K. Donner, R. Nasanen, and A. Raninen. Flicker sensitivity as a function of target area with and without temporal noise. In Vision Research, pages 3841– 3851, 2000. [56] S. Roy and Q. Sun. Robust hash for detecting and localizing image tampering. In Proc. IEEE Int. Conf. on Image Processing, pages VI–117–VI–120, 2007. [57] A. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition. In Proc. of the 12 Annual Int. Conf. on Information Security and Cryptology, LNCS 5984, pages 229–244, 2009. [58] C. P. Schnorr. Factoring integers and computing discrete logarithms via diophantine. In Lecture Notes in Computer Science 547, pages 281–293, 1991. [59] J. Seberry and J. Pieprzyk. Cryptography: An Introduction to Computer Security. Prentice Hall, 1989. [60] J. Shashank, P. Kowshik, K. Srinathan, and C. Jawahar. Private content based image retrieval. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008. [61] V. Shoup. Lower bounds for discrete logarithms and related problems. Theory and Application of Cryptographic Techniquues, pages 256–266, 1997. [62] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches in encrypted data. In IEEE Int. Symposium on Research in Security and Privacy, pages 44–55, 2000. [63] Z. Sun. Video halftoning. IEEE Trans. on Image Processing, pages 678–686, 2006. [64] A. Swaminathan, Y. Mao, G. M. Su, H. Gou, A. L. Varna, S. He, M. Wu, and D. W. Oard. Confidentiality preserving rank-ordered search. In ACM Workshop on Storage, Security, and Survivability, pages 7–12, 2007. [65] M. Tagliasacchi, G. Valenzise, and S. Tubaro. Hash-based identification of sparse image tampering. In IEEE Trans. on Image Processing, pages 2491–2504, 2009. [66] E. Teske. Speeding up pollard’s rho method for computing discrete logarithms. In Proceedings of ANTS III, pages 541–553, 1998. [67] C. Velardo and J. L. Dugelay. Face recognition with daisy descriptors. In Proc. ACM Multimedia and Security Workshop, pages 95–100, 2010. [68] C. D. Walter. Montgomery exponentiation needs no final subtractions. Electron. Lett., 35(21):1831 – 1832, 1999. [69] P. W. Wong and N. D. Memon. Image processing for halftones. IEEE Signal Processing Magazine, pages 50–70, 2003. [70] Z. Yang, S. Kamata, and A. Ahrary. Nir: Content based image retrieval on cloud computing. In Proc. IEEE Int. Conf. on Intelligent Computing and Intelligent Systems, pages 556–559, 2009. [71] A. Yao. Protocols for secure computations. In IEEE Symp. Foundations Computer Science, pages 160–164, 1982. [72] Z. Ye, X. Chen, and Z. Li. Video based mobile location search with large set of sift points in cloud. In MCMC Workshop at ACM Multimedia Conference, pages 25–30, 2010. [73] P. Zheng and J. Huang. Implementation of the discrete wavelet transform and multiresolution analysis in the encrypted domain. In ACM Multimedia Conference, 2011. [74] J. Zhu, S. Hoi, M. R. Lyu, and S. Yan. Near-duplicate keyframe retrieval by nonrigid image matching. In ACM MM, pages 40–50, 2008. [75] X. Zhuge, Y. Hirano, and K. Nakano. A new hybrid multitoning based on the direct binary search. In Proceedings of the International MultiConference of Engineers and Computer Scientists, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66357 | - |
dc.description.abstract | 隨著行動裝置與網路技術的進步,雲端服務提供者開始為各種行動裝置的使
用者提供服務。其中以多媒體的各種應用最為廣泛。這種新型態的多媒體應用逐 漸改變人類的生活;此外,也帶來許多多媒體應用上的安全性議題。本論文將逐一 討論這些由雲端與行動環境中的多媒體應用所衍生出的安全性議題。 對於一個行動裝置而言,視訊半色調技術掌握電子紙顯示器能撥放視訊的關 鍵,且在近年受到相當程度的重視。在本論文中,我們提出一種新的半色調視訊 編碼技術,應用在新型行動顯示裝置的電子紙中,為了避免可能發生在半色調視 訊中的閃爍及其他視覺現象,我們提出平均閃爍估算將視訊品質與平均閃爍樂最 佳化。此外,提出的最佳化技術也可以應用在各種不同的半色調視訊產生技術 中。當電子紙與雲端環境的多媒體應用結合後,所遭遇到的第一個安全性問題便 是在電子紙中撥放的視訊是否通過認證。由於視訊經過雲端傳播,視訊可能經過 竄改而惡意傳遞錯誤訊息,因此在視訊或影像撥放之前,必須先經由視訊認證技 術確認接收到的視訊是正確無誤的;為此,我們在論文中提出基於壓縮感測的半色 調視訊認證技術。 在各種多媒體雲端服務中,影像比對的應用最為廣泛,如人臉辨識,臉孔 偵測,圖形識別等,而這些技術多數是基於影像特徵抽取技術;對此,我們進一 步指出目前在多媒體領域中常使用的特徵抽取技術的缺點,由於目前常用的多 媒體安全技術如浮水印技術,複製偵測技術或影像認證技術皆利用尺度不變特 徵(SIFT)等特徵抽取技術來實現,而其本身的安全性缺點將使基於該技術發展出 的各種應用有安全性的疑慮,在本論文中,我們首先證明了此類特徵抽取技術特 徵點可以被輕易地移除,導致該技術在各種安全性應用中失效。此外,我們更利 用非線性規畫方式將移除特徵點所產生的失真降到最低,以此計算特徵點的移除所需付出的失真;接著我們會提出如何改善此一缺點,發展出具有安全性的特徵抽 取技術。 最後,當雲端技術開始普及,使用者將大量的多媒體資料儲存於伺服器中, 在這樣的環境下使用者的隱私很有可能遭到洩漏,因此,我們提出一種在能應 用在雲端環境中,基於加密域的特徵抽取技術;藉由此技術,我們可以在已加密 的影像中,不需將影像解密即可直接抽取出加密的特徵做比對,過程中不會洩 漏影像的資訊,如此,伺服器在不知道影像內容的情況下便可達到影像比對的 目的,使用者的隱私權便可以得到保障。為達到此目的,我們首先提出安全比 對,所提出的安全比對提供兩個加密值在不需解密的情況下得知兩個相對應解 密值的大小,以此安全比對技術為基礎,再配合加密方法中原有的加法同態特 性(Homomorphism),許多既有的演算法便可在加密域中被實現。 | zh_TW |
dc.description.abstract | With the advances in mobile device and cloud computing technologies, cloud computing
provider focuses on providing various multimedia applications as services to mobile device users. The new type of multimedia application is changing people’s life. On the other hand, it also lead to several multimedia security issues. In this dissertation, the multimedia security issues will be described. For a mobile device, video halftoning is a key technology for use in electronic paper (e-paper) or smart paper, which is an emerging display device that has received considerable attention recently. In this dissertation, a temporal frequency of flickering-distortion optimized video halftoning method is proposed. We first uncover three visual defects that conventional neighboring frame referencing-based video halftoning methods, due to their sequential changes of reference frames, will encounter. To deal with the problem, we then propose a reference frame update per GOP-based error diffusion video halftoning method based on a flickering sensitivity-based human visual model. To efficiently compromise between average temporal frequency of flickering (ATFoF) and visual quality, temporal frequency of flickering-distortion (TFoFD) is presented as a metric for video halftoning performance evaluation. Based on the proposed probability model of video halftoning, the TFoFD curve can be accurately estimated to optimize the tradeoff between quality and ATFoF before the video is halftoned. Our temporal frequency of flickering-distortion optimization strategy can also be applied to other video halftoning schemes for performance improvement. With the advances in mobile device and cloud computing technologies, people are getting used to accessing and querying multimedia data in the cloud environment. Scale space image feature extraction (SSIFE) has been widely adopted in multimedia security and other applications for cloud service. However, the security threat to SSIFE-based media security applications, which will be addressed in this thesis, is relatively unexplored. The security threat, composed of a constrained-optimization keypoint inhibition attack (KIHA) and a keypoint insertion attack (KISA), is specifically designed in the proposed method for scale-space feature extraction methods such as SIFT and SURF. The principle of KIHA is to make a fool of feature extraction protocols in that the detection rules are purposely violated so that no local maximum can be found around in a local region. On the other hand, KISA is designed to create the false positive problem. Our method is evaluated and compared with Do et al.’s method (ACM MM’10), which also figures out the weakness of our previous work (ACM MM’09). In addition, our proposed security threat is applied to an image copy detection method operated on a web-scale image database for performance evaluation. In addition, privacy has received considerable attention but is still largely ignored in the multimedia community. Consider a cloud computing scenario where the server is resource-abundant and is capable of finishing the designated tasks. It is envisioned that secure media applications with privacy preservation will be seriously treated. In view of the fact that scale-invariant feature transform (SIFT) has been widely adopted in various fields, this dissertation is the first to target the importance of privacy-preserving SIFT (PPSIFT) and to address the problem of secure SIFT feature extraction and representation in the encrypted domain. As all of the operations in SIFT must be moved to the encrypted domain, we propose a privacy-preserving realization of the SIFT method based on homomorphic encryption. In our method, homomorphic comparison is a key component for PPSIFT feature detection, but it is still a challenging issue for homomorphic encryption methods, like the Paillier cryptosystem. To solve this problem, the idea here is to investigate a homomorphic comparison strategy via quantization. We also analyze the error probability of feature extraction due to a scaling factor being introduced to realize an integer DoG transform in the Paillier cryptosystem. Moreover, we show through the security analysis based on the discrete logarithm problem and RSA that PPSIFT is secure against ciphertext only attack and known plaintext attack. Experimental results obtained from different case studies demonstrate that the proposed homomorphic encryption-based privacy-preserving SIFT performs comparably to original SIFT and that our method is useful in SIFT-based privacy-preserving applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:31:48Z (GMT). No. of bitstreams: 1 ntu-101-D94942021-1.pdf: 2804353 bytes, checksum: 1f256b1e5f7f0d37b8b8f96a93a5b6e8 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝. . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Temporal Frequency of Flickering-Distortion Optimized Video Halftoning for Electronic Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Flickering flaws in video halftoning . . . . . . . . . . . . . . . . 10 2.2.2 Three visual artifacts generated from flickering reduction . . . . . 11 2.3 Reference Frame Update-based Error Diffusion and temporal frequency of flickering-Distortion of Video Halftoning . . . . . . . . . . . . . . . . 16 2.3.1 Reference frame update per GOP-based error diffusion for video halftoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Implication from temporal frequency of flickering-distortion (TFoFD) of video halftoning . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Temporal frequency of flickering-distortion (TFoFD) optimization . . . . 29 2.4.1 Probability model of digital halftoning . . . . . . . . . . . . . . . 30 2.4.2 Average temporal frequency of flickering estimation . . . . . . . 31 2.4.3 Distortion estimation . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.4 Temporal Frequency of Flickering-Distortion Estimation for Op- timum Flickering Reduction Threshold Selection . . . . . . . . . 33 2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.1 Accuracy of the estimated average temporal frequency of flicker- ing, distortion, and temporal frequency of flickering-distortion . . 35 2.5.2 Accuracy of Temporal Frequency of Flickering-Distortion (TFoFD) Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.3 Performance comparisons . . . . . . . . . . . . . . . . . . . . . 38 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Content Authentication for Halftone Video . . . . . . . . . . . . . . . . . . . . 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Flickering as a Sparse Signal . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Content Authentication for Halftone Video Based on Perceptual Hashing . 45 3.3.1 Perceptual Hash for I Frames . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Perceptual Hash for P Frames . . . . . . . . . . . . . . . . . . . 47 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Reference frame authentication . . . . . . . . . . . . . . . . . . 49 3.4.2 P frame authentication . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Security Threat to Media Security Applications based on Scale-Space Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Scale-Space Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.1 Scale-Space Image Representation . . . . . . . . . . . . . . . . . 57 4.2.2 Scale-Invariant Feature Transform (SIFT) . . . . . . . . . . . . . 58 4.2.3 Speeded Up Robust Features (SURF) . . . . . . . . . . . . . . . 59 4.2.4 Security Threat to Scale-Space Feature Extraction . . . . . . . . 59 4.3 Attacks on Scale-Space Feature Extraction . . . . . . . . . . . . . . . . . 60 4.3.1 Duplicate Local Extrema for Restraining Keypoint Detection in the scale-space domain . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Constraint-Optimized Security Threat to Scale-Space Feature Extraction . 63 4.4.1 Keypoint Removal via Lagrange Multiplier in Spatial Domain . . 63 4.4.2 Keypoint Removal via Karush Kuhn Tucker (KKT) Conditions in Spatial Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.3 Keypoint Removal via Fast KKT Conditions in Spatial Domain . 68 4.5 Fake Keypoint Insertion for Creating False Positive . . . . . . . . . . . . 68 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.1 Proposed Method vs. Keypoint Removal Rate . . . . . . . . . . . 72 4.6.2 Security Threat to Image Copy Detection System . . . . . . . . . 73 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Image Feature Extraction in Encrypted Domain with Privacy-Preserving SIFT . 78 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.1.1 Privacy-Preserving Query . . . . . . . . . . . . . . . . . . . . . 78 5.1.2 Importance of Privacy-Preserving SIFT and Our Contributions . . 79 5.1.3 Organization of This Chapter . . . . . . . . . . . . . . . . . . . . 82 5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 Operations in the Encrypted Domain . . . . . . . . . . . . . . . . . . . . 85 5.3.1 SIFT in an Encrypted Domain . . . . . . . . . . . . . . . . . . . 86 5.3.2 Paillier Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4 PPSIFT: Secure SIFT in Homomorphic Encrypted Domain . . . . . . . . 89 5.4.1 Difference of Gaussian in the Encrypted Domain . . . . . . . . . 90 5.4.2 PPSIFT Feature Point Detection: Local Extrema Extraction via Encrypted Data Comparison . . . . . . . . . . . . . . . . . . . . 92 5.4.3 PPSIFT Feature Point Descriptor in Encrypted Domain . . . . . . 100 5.4.4 PPSIFT Feature Descriptor Matching in the Encrypted Domain . 102 5.4.5 Comparison with Original SIFT . . . . . . . . . . . . . . . . . . 104 5.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.5.1 Ciphertext only attack . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.2 Known plaintext attack . . . . . . . . . . . . . . . . . . . . . . . 108 5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.6.1 Scaling factor and feature point error probability . . . . . . . . . 110 5.6.2 Robustness Evaluation . . . . . . . . . . . . . . . . . . . . . . . 111 5.6.3 Case Study on Privacy-Preserving Image Retrieval . . . . . . . . 112 5.6.4 Case Study on Privacy-Preserving Face Recognition . . . . . . . 117 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6 Conclusions and Feature Works . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 | |
dc.language.iso | en | |
dc.title | 尺度不變特徵與半色調視訊之安全議題 | zh_TW |
dc.title | Security Issues in SIFT and Video Halftoning | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 廖弘源(Hong-Yuan Mark Liao),杭學鳴(Hsueh-Ming Hang),吳家麟(Ja-Ling Wu),張隆紋(Long-Wen Chang),郭景明(Jing-Ming Guo) | |
dc.subject.keyword | 半色調,視訊,多媒體安全,尺度不變,特徵抽取,加密, | zh_TW |
dc.subject.keyword | Halftoning,Video,Security,SIFT,Feature Extraction,Encryption, | en |
dc.relation.page | 139 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。