請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張翠玉(Emmy T.-Y. Chang),曾泰琳(Tai-Lin Tseng) | |
| dc.contributor.author | Wen-Hui Lee | en |
| dc.contributor.author | 李文蕙 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:30:42Z | - |
| dc.date.available | 2013-02-21 | |
| dc.date.copyright | 2012-02-21 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-11 | |
| dc.identifier.citation | Ai, Y., T. Zheng, W. Xu, Y. He, and D. Dong (2003), A complex 660 km discontinuity beneath northeast China, Earth and Planetary Science Letters, 212(1-2), 63-71.
Ammon, C. J. (1991), The isolation of receiver effects from teleseismic P waveforms, Bulletin of the Seismological Society of America, 81(6), 2504-2510. Ammon, C. J., G. E. Randall, and G. Zandt (1990), On the Nonuniqueness of Receiver Function Inversions, J. Geophys. Res., 95(B10), 15303-15318. Beck, S. L., and G. Zandt (2002), The nature of orogenic crust in the central Andes, J. Geophys. Res., 107(B10), 2230. Beck, S. L., G. Zandt, S. C. Myers, T. C. Wallace, P. G. Silver, and L. Drake (1996), Crustal-thickness variations in the central Andes, Geology, 24(5), 407-410. Beckers, J., S. Y. Schwartz, and T. Lay (1994), The velocity structure of the crust and upper mantle under China from broad-band P and PP waveform analysis, Geophysical Journal International, 119(2), 574-594. Brudzinski, M. R., and W.-P. Chen (2005), Earthquakes and strain in subhorizontal slabs, J. Geophys. Res., 110. Burdick, L. J., and C. A. Langston (1977), Modeling crustal structure through the use of converted phases in teleseismic body-wave forms, Bulletin of the Seismological Society of America, 67(3), 677-691. Cassidy, J. F. (1992), Numerical experiments in broadband receiver function analysis, Bulletin of the Seismological Society of America, 82(3), 1453-1474. Christensen, N. I. (1996), Poisson's ratio and crustal seismology, J. Geophys. Res., 101(B2), 3139-3156. Christensen, N. I., and W. D. Mooney (1995), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100(B6), 9761-9788. De Kool, M., N. Rawlinson, and M. Sambridge (2006), A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media, Geophysical Journal International, 167(1), 253-270. Kennett, B. L. N. (1983), Seismic wave propagation in stratified media, Cambridge University Press, Cambridge, England, 342. Langston, C. A. (1977a), Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves, Bulletin of the Seismological Society of America, 67(3), 713-724. Langston, C. A. (1977b), The effect of planar dipping structure on source and receiver responses for constant ray parameter, Bulletin of the Seismological Society of America, 67(4), 1029-1050. Langston, C. A. (1979), Structure Under Mount Rainier, Washington, Inferred From Teleseismic Body Waves, J. Geophys. Res., 84(B9), 4749-4762. Li, C., R. D. v. d. Hilst, E. R. Engdahl, and S. Burdick (2008), A new global model for P wave speed variations in Earth's manlte, GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 9. Li, X., and X. Yuan (2003), Receiver functions in northeast China - implications for slab penetration into the lower mantle in northwest Pacific subduction zone, Earth and Planetary Science Letters, 216(4), 679-691. Li, X., S. V. Sobolev, R. Kind, X. Yuan, and C. Estabrook (2000), A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone, Earth and Planetary Science Letters, 183(3-4), 527-541. Ligorria, J. P., and C. J. Ammon (1999), Iterative deconvolution and receiver-function estimation, Bulletin of the Seismological Society of America, 89(5), 1395-1400. Mangino, S., K. Priestley, and J. Ebel (1999), The receiver structure beneath the China Digital Seismograph Network stations, Bulletin of the Seismological Society of America, 89(4), 1053-1076. Owens, T. J. (1987), Crustal Structure of the Adirondacks Determined From Broadband Teleseismic Waveform Modeling, J. Geophys. Res., 92(B7), 6391-6401. Owens, T. J., G. Zandt, and S. R. Taylor (1984), Seismic Evidence for an Ancient Rift Beneath the Cumberland Plateau, Tennessee: A Detailed Analysis of Broadband Teleseismic P Waveforms, J. Geophys. Res., 89(B9), 7783-7795. Parker, R. L. (1977), Understanding inverse theory, Ann. Rev. Earth Planet. Sci., 5, 35-64. Phinney, R. A. (1964), Structure of the Earth's Crust from Spectral Behavior of Long-Period Body Waves, J. Geophys. Res., 69(14), 2997-3017. Randall, G. E. (1989), Efficient calculation of differential seismograms for lithospheric receiver functions, Geophysical Journal International, 99(3), 469-481. Randall, G. E. (1994), Efficient calculation of complete differential seismograms for laterally homogeneous earth models, Geophysical Journal International, 118(1), 245-254. Rui, F., Z. Jieshou, D. Yunyu, C. Guoying, H. Zhengqin, Y. Shubin, Z. Hainan, and S. Kezhong (1981), Crustal structure in China from surface waves, Acta Seismologica Sinica, 4, 335-350. Shaw, P. R., and J. A. Orcutt (1985), Waveform inversion of seismic refraction data and applications to young Pacific crust, Geophysical Journal of the Royal Astronomical Society, 82(3), 375-414. Yuan, X., S. Wang, L. Li, and J Zhu (1986). A geophysical investigation of the deep structure in China, in Reflection Seismology: A Global Perspective, Geodynamic Series, 13, American Geophysical Union, Washington, DC, 151-160. Zandt, G., M. Leidig, J. Chmielowski, D. Baumont, and X. Yuan (2003), Seismic Detection and Characterization of the Altiplano-Puna Magma Body, Central Andes, Pure and Applied Geophysics, 160(3), 789-807. Zhang, J., and C. A. Langston (1995), Constraints on oceanic lithosphere structure from deep-focus regional receiver function inversions, J. Geophys. Res., 100(B11), 22187-22196. Zhihong, S., L. Zhanpo, and Y. Xiuhua (1989). Crustal thickness by gravity inversion, in Lithospheric Dynamics Atlas of China, M. Xingyuan (Editor), China Cartographic Publishing House, Beijing. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66332 | - |
| dc.description.abstract | 一般傳統的接收函數法(Receiver Function),乃是利用近乎垂直入射的遠震P波資料來研究測站下之地殼與上地幔速度構造。若在選取適當的入射角度範圍下,區域深震亦可依此原理用來計算接收函數,且由於區域地震的傳播距離較短,能量沿著傳播路徑之衰減與擴散較少,規模較小之地震亦可使用。因此,當遠震資料有數量不足或方位上分布不均時,區域深震能提供額外的資料作接收函數分析,以提高分析結果之可信度。
為了證實以上論點,本研究以中國東北的牡丹江測站資料,比較遠震以及區域深震兩種資料所作之接收函數結果。為了避免其他因素影響結果,兩組地震資料所選取之方位角相似,且為符合入射角之條件以及有足夠長之P波資料作接收函數計算,對於區域深震資料,我們選取震央距2至5度、深度大於400公里之隱沒帶深震資料作分析。比較結果顯示,區域深震與遠震兩組資料所得之接收函數結果相當一致,且推算出的地殼厚度約為36至40公里,亦與前人之研究結果相符,顯示區域深震接收函數之可行性。 此外,在區域深震與遠震接收函數結果中,兩者的PpPms波到時約有0.4秒的差異,此差異對逆推構造之結果影響極小,而造成此時間差之原因,本研究提出五種可能因素,但經過仔細計算與確認後皆無法完全解釋。雖然對於造成此時間差的原因,目前仍不清楚,但並不影響牡丹江站之速度逆推結果。 | zh_TW |
| dc.description.abstract | For the conventional receiver function (RF) analysis, waveforms of steeply impinging P-waves from tele-earthquakes are used to investigate the crust and upper mantle structures beneath seismic stations. In principle, regional deep events can also be used to calculate RFs as long as the ray parameters are in appropriate range similar to those from teleseismic events. Due to shorter epicentral distances, the regional body waves experience less geometrical spreading and attenuation along the paths of propagation. Therefore, regional events potentially could provide additional data for the RF analysis when available teleseismic events are limited.
Based on our extensive tests, the results show that the RFs estimated using regional deep earthquakes are comparable to those from teleseismic events. We perform side-by-side comparisons of RFs calculated from different sets of data at a narrow azimuth range to avoid other complications. For the regional case, we select data from events deeper than 400 km with epicentral distances between 2° and 5° so that the incident angles are small and the P wave trains are sufficiently long for deconvolution. Using station MDJ and deep events in Japan Sea as examples, we successfully estimate the crustal thickness under northeast China to be 36~40 km, consistent with previous studies for this area. Moreover, we discover that there is about 0.4 s of time difference in PpPms-P between the regional and teleseismic RFs. We examine five possible scenarios and none of them are able to provide satisfying explanation to the observation. However, such differences in PpPms-P do not significantly influence the inversed seismic velocity model. Here the regional RF analysis is considered to efficiently determine seismic structure, as well as the results compiled from the teleseismic RF. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:30:42Z (GMT). No. of bitstreams: 1 ntu-101-R98241301-1.pdf: 46279297 bytes, checksum: a0352ad76aa6f941d11fd65904922f47 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書..................................#
誌謝..............................................i 摘要.............................................ii ABSTRACT........................................iii 目錄.............................................iv 圖目錄..........................................vii 表目錄...........................................ix 第一章 緒論.......................................1 1.1 研究動機與目的................................1 1.2 接收函數法文獻回顧............................3 1.3 研究區域介紹..................................5 第二章 研究原理與方法.............................7 2.1 接收函數法原理................................7 2.2 解迴旋之方法.................................10 2.2.1 頻率域相除之解迴旋法(Deconvolution by Division in Frequency Domain) ...............................10 2.2.2 時間域迭代之解迴旋法(Deconvolution by Iteration in Time Domain)....................................11 2.3 區域深震之接收函數...........................16 2.4 接收函數逆推一維速度模型之方法...............20 第三章 資料篩選與分析............................22 3.1 地震資料來源與篩選...........................25 3.2 解迴旋之參數設定.............................30 3.2.1 頻率域解迴旋法之參數設定...................30 3.2.2 時間域迭代解迴旋法之參數設定...............31 3.3 預濾波(Pre-filter).........................35 3.4 逆推之初始速度模型參數設定...................41 3.5 南美洲中部地區之接收函數分析.................43 第四章 結果與討論................................45 4.1 牡丹江站接收函數波形結果.....................45 4.2 牡丹江站速度構造逆推結果.....................50 4.3 造成PpPms波到時差之因素......................53 4.3.1 波線參數不同之影響.........................53 4.3.2 曲面波波前之影響...........................53 4.3.3 Moho面傾斜或淺部側向非均質速度構造之影響...54 4.3.4 震源附近隱沒板塊之影響.....................54 4.3.5 區域深震定位誤差之影響.....................55 4.3.6 小結.......................................55 第五章 結論......................................62 參考文獻.........................................63 附錄一 牡丹江測站資料頻率域之解迴旋法結果........67 A. 高品質區域深震資料之接收函數..................67 B. 高品質遠震資料之接收函數......................68 附錄二 南美洲中部接收函數波形....................71 A. 南美洲中部區域深震資料列表....................71 B. 測站資訊......................................71 C. 接收函數波形..................................72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 接收函數 | zh_TW |
| dc.subject | 接收函數 | zh_TW |
| dc.subject | 區域深震 | zh_TW |
| dc.subject | 區域深震 | zh_TW |
| dc.subject | Regional deep earthquakes | en |
| dc.subject | Receiver function | en |
| dc.subject | Receiver function | en |
| dc.subject | Regional deep earthquakes | en |
| dc.title | 利用區域深震之接收函數研究地殼速度構造 | zh_TW |
| dc.title | P-wave Receiver Functions from Regional Deep Earthquakes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭本垣(Ban-Yuan Kuo),洪淑蕙,梁文宗(Wen-Tzong Liang) | |
| dc.subject.keyword | 接收函數,區域深震, | zh_TW |
| dc.subject.keyword | Receiver function,Regional deep earthquakes, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 45.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
