請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66330
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭錦樺(Ching-Hua Kuo) | |
dc.contributor.author | Sung-Jeng Tsai | en |
dc.contributor.author | 蔡松政 | zh_TW |
dc.date.accessioned | 2021-06-17T00:30:37Z | - |
dc.date.available | 2014-03-02 | |
dc.date.copyright | 2012-03-02 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-13 | |
dc.identifier.citation | 1. Roberts, L. D.; McCombie, G.; Titman, C. M.; Griffin, J. L., A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 2008, 871 (2), 174-81.
2. Han, X.; Gross, R. W., Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 2003, 44 (6), 1071-9. 3. Wenk, M. R., Lipidomics: new tools and applications. Cell 143 (6), 888-95. 4. Hu, C.; Van der Heijden, R.; Wang, M.; Van der Greef, J.; Hankemeier, T.; Xu, G., Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877 (26), 2836-46. 5. Richard Cammack, T. A., Peter Campbell, Howard Parish, Anthony Smith, Frank Vella, and John Stirling, Oxford Dictionary of Biochemistry and Molecular Biology. 2nd ed.; Oxford University Press: New York 2006. 6. Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill, A. H., Jr.; Murphy, R. C.; Raetz, C. R.; Russell, D. W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M. S.; White, S. H.; Witztum, J. L.; Dennis, E. A., A comprehensive classification system for lipids. J Lipid Res 2005, 46 (5), 839-61. 7. Quehenberger, O.; Armando, A. M.; Brown, A. H.; Milne, S. B.; Myers, D. S.; Merrill, A. H.; Bandyopadhyay, S.; Jones, K. N.; Kelly, S.; Shaner, R. L.; Sullards, C. M.; Wang, E.; Murphy, R. C.; Barkley, R. M.; Leiker, T. J.; Raetz, C. R. H.; Guan, Z. Q.; Laird, G. M.; Six, D. A.; Russell, D. W.; McDonald, J. G.; Subramaniam, S.; Fahy, E.; Dennis, E. A., Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research 2010, 51 (11), 3299-3305. 8. Watson, A. D., Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 2006, 47 (10), 2101-11. 9. Jemal, M.; Ouyang, Z.; Xia, Y. Q., Systematic LC-MS/MS bioanalytical method development that incorporates plasma phospholipids risk avoidance, usage of incurred sample and well thought-out chromatography. Biomedical Chromatography 2010, 24 (1), 2-19. 10. Hu, C. X.; van der Heijden, R.; Wang, M.; van der Greef, J.; Hankemeier, T.; Xua, G. W., Analytical strategies in lipidomics and applications in disease biomarker discovery. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2009, 877 (26), 2836-2846. 11. Roberts, L. D.; McCombie, G.; Titman, C. M.; Griffin, J. L., A matter of fat: An introduction to lipidomic profiling methods. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2008, 871 (2), 174-181. 12. Han, X. L., Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer's disease. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 2010, 1801 (8), 774-783. 13. Mas, S.; Martinez-Pinna, R.; Martin-Ventura, J. L.; Perez, R.; Gomez-Garre, D.; Ortiz, A.; Fernandez-Cruz, A.; Vivanco, F.; Egido, J., Local Non-Esterified Fatty Acids Correlate With Inflammation in Atheroma Plaques of Patients With Type 2 Diabetes. Diabetes 2010, 59 (6), 1292-1301. 14. Khalil, M. B.; Hou, W. M.; Zhou, H.; Elisma, F.; Swayne, L. A.; Blanchard, A. P.; Yao, Z. M.; Bennett, S. A. L.; Figeys, D., Lipidomics Era: Accomplishments and Challenges. Mass Spectrometry Reviews 2010, 29 (6), 877-929. 15. Norum, K. R., Dietary-Fat and Blood-Lipids. Nutrition Reviews 1992, 50 (4), 30-37. 16. Wang, T.; Zang, Y.; Ling, W. H.; Corkey, B. E.; Guo, W., Metabolic partitioning of endogenous fatty acid in adipocytes. Obesity Research 2003, 11 (7), 880-887. 17. Bicalho, B.; David, F.; Rumplel, K.; Kindt, E.; Sandra, P., Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry. Journal of Chromatography A 2008, 1211 (1-2), 120-128. 18. Raatz, S. K.; Bibus, D.; Thomas, W.; Kris-Etherton, P., Total fat intake modifies plasma fatty acid composition in humans. Journal of Nutrition 2001, 131 (2), 231-234. 19. Marangoni, F.; Colombo, C.; Martiello, A.; Negri, E.; Galli, C., The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers. Prostaglandins Leukotrienes and Essential Fatty Acids 2007, 76 (2), 87-92. 20. Yi, L. Z.; Yuan, D. L.; Che, Z. H.; Liang, Y. Z.; Zhou, Z. G.; Gao, H. Y.; Wang, Y. M., Plasma fatty acid metabolic profile coupled with uncorrelated linear discriminant analysis to diagnose and biomarker screening of type 2 diabetes and type 2 diabetic coronary heart diseases. Metabolomics 2008, 4 (1), 30-38. 21. Ruiz-Rodriguez, A.; Reglero, G.; Ibanez, E., Recent trends in the advanced analysis of bioactive fatty acids. J Pharm Biomed Anal 51 (2), 305-26. 22. Bou Khalil, M.; Hou, W.; Zhou, H.; Elisma, F.; Swayne, L. A.; Blanchard, A. P.; Yao, Z.; Bennett, S. A.; Figeys, D., Lipidomics era: accomplishments and challenges. Mass Spectrom Rev 29 (6), 877-929. 23. James, A. T.; Martin, A. J., Gas-liquid partition chromatography; the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 1952, 50 (5), 679-90. 24. Seppanen-Laakso, T.; Oresic, M., How to study lipidomes. Journal of Molecular Endocrinology 2009, 42 (3-4), 185-190. 25. Gutnikov, G., Fatty-Acid Profiles of Lipid Samples. Journal of Chromatography B-Biomedical Applications 1995, 671 (1-2), 71-89. 26. Eras, J.; Montanes, F.; Ferran, J.; Canela, R., Chlorotrimethylsilane as a reagent for gas chromatographic analysis of fats and oils. Journal of Chromatography A 2001, 918 (1), 227-232. 27. Akoto, L.; Vreuls, R. J. J.; Irth, H.; Pel, R.; Stellaard, F., Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-mass spectrometry. Journal of Chromatography A 2008, 1186 (1-2), 365-371. 28. Tapur, F. N.; Bhanger, M. I.; Rahman, A. U.; Memon, G. Z., Application of factorial design in optimization of anion exchange resin based methylation of vegetable oil and fats. Innovative Food Science & Emerging Technologies 2008, 9 (4), 608-613. 29. Quehenberger, O.; Armando, A. M.; Dennis, E. A., High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 2011, 1811 (11), 648-656. 30. Christie, W. W., Gas chromatography mass spectrometry methods for structural analysis of fatty acids. Lipids 1998, 33 (4), 343-353. 31. Dodds, E. D.; McCoy, M. R.; Rea, L. D.; Kennish, J. M., Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids 2005, 40 (4), 419-428. 32. Zehethofer, N.; Pinto, D. M.; Volmer, D. A., Plasma free fatty acid profiling in a fish oil human intervention study using ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2008, 22 (13), 2125-2133. 33. Ruiz-Rodriguez, A.; Reglero, G.; Ibanez, E., Recent trends in the advanced analysis of bioactive fatty acids. Journal of Pharmaceutical and Biomedical Analysis 2010, 51 (2), 305-326. 34. Hsu, F. F.; Turk, J., Elucidation of the Double-Bond Position of Long-Chain Unsaturated Fatty Acids by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization. Journal of the American Society for Mass Spectrometry 2008, 19 (11), 1673-1680. 35. Yang, K.; Zhao, Z.; Gross, R. W.; Han, X., Identification and quantitation of unsaturated fatty acid isomers by electrospray ionization tandem mass spectrometry: a shotgun lipidomics approach. Anal Chem 83 (11), 4243-50. 36. Juaneda, P., Utilisation of reversed-phase high-performance liquid chromatography as an alternative to silver-ion chromatography for the separation of cis- and trans-C18 : 1 fatty acid isomers. Journal of Chromatography A 2002, 954 (1-2), 285-289. 37. Jemal, M.; Zheng, O. Y.; Teitz, D. S., High performance liquid chromatography mobile phase composition optimization for the quantitative determination of a carboxylic acid compound in human plasma by negative ion electrospray high performance liquid chromatography tandem mass spectrometry. Rapid Communications in Mass Spectrometry 1998, 12 (8), 429-434. 38. Gagne, S.; Crane, S.; Huang, Z.; Li, C. S.; Bateman, K. P.; Levesque, J. F., Rapid measurement of deuterium-labeled long-chain fatty acids in plasma by HPLC-ESI-MS. Journal of Lipid Research 2007, 48 (1), 252-259. 39. Li, X. N.; Franke, A. A., Improved LC-MS Method for the Determination of Fatty Acids in Red Blood Cells by LC-Orbitrap MS. Analytical Chemistry 2011, 83 (8), 3192-3198. 40. Yang, W. C.; Adamec, J.; Regnier, F. E., Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Analytical Chemistry 2007, 79 (14), 5150-5157. 41. Cappiello, A.; Famiglini, G.; Palma, P.; Pierini, E.; Termopoli, V.; Trufelli, H., Overcoming matrix effects in liquid chromatography-mass spectrometry. Anal Chem 2008, 80 (23), 9343-8. 42. Cappiello, A.; Famiglini, G.; Pierini, E.; Palma, P.; Trufelli, H., Advanced liquid chromatography-mass spectrometry interface based on electron ionization. Analytical Chemistry 2007, 79 (14), 5364-5372. 43. Trufelli, H.; Famiglini, G.; Termopoli, V.; Cappiello, A., Profiling of non-esterified fatty acids in human plasma using liquid chromatography-electron ionization mass spectrometry. Analytical and Bioanalytical Chemistry 2011, 400 (9), 2933-2941. 44. Giddings, J. C., Unified separation science. Toronto J. Wiley: New York, 1991. 45. Schutjes, C. P. M.; Leclercq, P. A.; Rijks, J. A.; Cramers, C. A.; Vidalmadjar, C.; Guiochon, G., Model Describing the Role of the Pressure-Gradient on Efficiency and Speed of Analysis in Capillary Gas-Chromatography. Journal of Chromatography 1984, 289 (Apr), 163-170. 46. Cramers, C. A.; Leclercq, P. A., Strategies for speed optimisation in gas chromatography: an overview. Journal of Chromatography A 1999, 842 (1-2), 3-13. 47. Eder, K., Gas-Chromatographic Analysis of Fatty-Acid Methyl-Esters. Journal of Chromatography B-Biomedical Applications 1995, 671 (1-2), 113-131. 48. Robert L. Grob, E. F. B., Modern Practice of Gas Chromatography. Wiley-Interscience: 2004; p p138-p148. 49. Robert L. Grob, E. F. B., Modern Practice of Gas Chromatography. Wiley-Interscience: 2004; p p230-p242. 50. Cruz-Hernandez, C.; Destaillats, F., Recent Advances in Fast Gas-Chromatography: Application to the Separation of Fatty Acid Methyl Esters. Journal of Liquid Chromatography & Related Technologies 2009, 32 (11-12), 1672-1688. 51. Hancock, C. R.; Han, D. H.; Chen, M.; Terada, S.; Yasuda, T.; Wright, D. C.; Holloszy, J. O., High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 2008, 105 (22), 7815-20. 52. Ichihara, K.; Yoneda, K.; Takahashi, A.; Hoshino, N.; Matsuda, M., Improved Methods for the Fatty Acid Analysis of Blood Lipid Classes. Lipids 2011, 46 (3), 297-306. 53. Folch, J.; Lees, M.; Stanley, G. H. S., A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. Journal of Biological Chemistry 1957, 226 (1), 497-509. 54. Mazalli, M. R.; Bragagnolo, N., Validation of two methods for fatty acids analysis in eggs. Lipids 2007, 42 (5), 483-90. 55. Masood, A.; Stark, K. D.; Salem, N., Jr., A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 2005, 46 (10), 2299-305. 56. Sheng, J.; Vannela, R.; Rittrnann, B. E., Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresource Technology 2011, 102 (2), 1697-1703. 57. Bondia-Pons, I.; Molto-Puigmarti, C.; Castellote, A. I.; Lopez-Sabater, M. C., Determination of conjugated linoleic acid in human plasma by fast gas chromatography. J Chromatogr A 2007, 1157 (1-2), 422-9. 58. Or-Rashid, M. M.; Fisher, R.; Karrow, N.; AlZahal, O.; McBride, B. W., Fatty acid profile of colostrum and milk of ewes supplemented with fish meal and the subsequent plasma fatty acid status of their lambs. Journal of Animal Science 2010, 88 (6), 2092-2102. 59. Lankinen, M.; Schwab, U.; Erkkila, A.; Seppanen-Laakso, T.; Hannila, M. L.; Mussalo, H.; Lehto, S.; Uusitupa, M.; Gylling, H.; Oresic, M., Fatty Fish Intake Decreases Lipids Related to Inflammation and Insulin Signaling-A Lipidomics Approach. Plos One 2009, 4 (4). 60. Rise, P.; Efigini, S.; Ghezzi, S.; Colli, S.; Galli, C., Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukotrienes and Essential Fatty Acids 2007, 76 (6), 363-369. 61. Nagy, K.; Jakab, A.; Fekete, J.; Vekey, K., An HPLC-MS approach for analysis of very long chain fatty acids and other apolar compounds on octadecyl-silica phase using partly miscible solvents. Analytical Chemistry 2004, 76 (7), 1935-1941. 62. Honeyman, T. W.; Strohsnitter, W.; Scheid, C. R.; Schimmel, R. J., Phosphatidic-Acid and Phosphatidylinositol Labeling in Adipose-Tissue - Relationship to the Metabolic Effects of Insulin and Insulin-Like Agents. Biochemical Journal 1983, 212 (2), 489-498. 63. Bligh, E. G.; Dyer, W. J., A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology 1959, 37 (8), 911-917. 64. Iverson, S. J.; Lang, S. L. C.; Cooper, M. H., Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 2001, 36 (11), 1283-1287. 65. Roose, P.; Smedes, F., Evaluation of the results of the QUASIMEME lipid intercomparison: The Bligh & Dyer total lipid extraction method. Marine Pollution Bulletin 1996, 32 (8-9), 674-680. 66. Smedes, F.; Askland, T. K., Revisiting the development of the Bligh and Dyer total lipid determination method. Marine Pollution Bulletin 1999, 38 (3), 193-201. 67. Schmid, P.; Hunter, E.; Calvert, J., Extraction and Purification of Lipids .3. Serious Limitations of Chloroform and Chloroform-Methanol in Lipid Investigations. Physiological Chemistry and Physics 1973, 5 (2), 151-155. 68. Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research 2008, 49 (5), 1137-1146. 69. Cook, S. I.; Sellin, J. H., Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther 1998, 12 (6), 499-507. 70. Seppanen-Laakso, T.; Laakso, I.; Hiltunen, R., Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Analytica Chimica Acta 2002, 465 (1-2), 39-62. 71. Sanchez-Avila, N.; Mata-Granados, J. M.; Ruiz-Jimenez, J.; Luque de Castro, M. D., Fast, sensitive and highly discriminant gas chromatography-mass spectrometry method for profiling analysis of fatty acids in serum. J Chromatogr A 2009, 1216 (40), 6864-72. 72. Delmonte, P.; Kia, A. R. F.; Kramer, J. K. G.; Mossoba, M. M.; Sidisky, L.; Rader, J. I., Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. Journal of Chromatography A 2011, 1218 (3), 545-554. 73. Gu, Q.; David, F.; Lynen, F.; Vanormelingen, P.; Vyverman, W.; Rumpel, K.; Xu, G.; Sandra, P., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. J Chromatogr A 1218 (20), 3056-63. 74. Davila-Roman, V. G.; Vedala, G.; Herrero, P.; de las Fuentes, L.; Rogers, J. G.; Kelly, D. P.; Gropler, R. J., Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology 2002, 40 (2), 271-277. 75. Juarez, M.; Polvillo, O.; Conto, M.; Ficco, A.; Ballico, S.; Failla, S., Comparison of four extraction/methylation analytical methods to measure fatty acid composition by gas chromatography in meat. J Chromatogr A 2008, 1190 (1-2), 327-32. 76. Meier, S.; Mjos, S. A.; Joensen, H.; Grahl-Nielsen, O., Validation of a one-step extraction/methylation method for determination of fatty acids and cholesterol in marine tissues. J Chromatogr A 2006, 1104 (1-2), 291-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66330 | - |
dc.description.abstract | 脂肪酸是體內參與能量平衡、訊息傳遞與維持細胞膜結構的重要物質。近幾年脂質代謝體的快速發展,配合化學劑量法分析大量樣品,發現血漿中許多脂質與疾病具相關性。本研究建立氣相層析質譜儀分析血漿中脂肪酸代謝體圖譜的方法,並比較不同的衍生化試劑,希望提供快速、穩固的方法在以應用於血漿中脂肪酸代謝體分析。
本研究以Folch萃取方法萃取血漿中脂質,以血漿萃取物、25種脂肪酸標準品衍生物與37種酯化脂肪酸標準品,對不同層析管柱與溫度梯度進行最佳化與探討,之後以優化條件比較Acetyl chloride、Hydrochloric acid、Boron trifluoride、Sulfuric acid、Sodium methoxide等五種衍生化試劑的衍生化效果,針對各種衍生化方法所提供之訊號強度和一日內與異日間之再現性進行討論。最佳化層析條件以SLB-IL82作為層析管柱,配合溫度梯度,可在25分鐘內建立血漿中脂肪酸之代謝體圖譜。相對其它衍生化方法,Acetyl chloride可以提供較好的訊號強度、再現性及較低的試劑價格。以最佳化的分析條件及Acetyl chloride衍生化方法分析心跳停止復甦急救之大鼠血漿,主成份分析結果顯示本研究所建立的脂肪酸代謝體圖譜可成功區分急救前、急救當下與急救後一小時的大鼠血漿。本實驗開發出一個快速且具有穩定再現性的分析方法,可以應用在未來分析脂質代謝體中脂肪酸的變化。 | zh_TW |
dc.description.abstract | Fatty acids play important roles in the energy balance and signal transduction in biological systems. Some fatty acids are important constituents of cell membrane. Recent development in Lipidomics with the advance in chemometric techniques discovered many fatty acids are associated with numerous diseases. Gas chromatography-mass spectrometry (GC-MS) is the most commonly used analytical tool for fatty acid analysis. We compared five frequently used derivatization methods, and optimized GC-MS conditions. This study aimed to establish a fast, economic and robust GC-MS method for metabolic profiling of fatty acid in plasma.
We used the Folch method to extract fatty acids in plasma. Plasma extract, 25 endogenous fatty acid and 37 fatty acid methyl esters were used to optimize gas chromatographic conditions. By using a SLB-IL82 column with optimized temperature gradient, metabolic profiles of fatty acid in plasma can be constructed within 25 minutes. We used the optimal GC-MS conditions to compare the performance of five derivatization methods, including Acetyl chloride, Hydrochloric acid, Boron trifluoride, Sulfuric acid and Sodium methoxide. The performances of the derivatization method were compared in terms of signal intensity, method precision and reagent cost. Compared to other derivatization methods, Acetyl chloride provided the highest singal intensity, best method precision with minimal reagent cost, and it was selected as the derivatization reagent for metabolic profiling of fatty acid in plasma. The developed method was applied to investigate fatty acid changes in post-cardiac arrest myocardial dysfunction rats. The plasma samples were collected at three time points before and after ischemia reperfusion, and they analyzed by the developed method. The results indicated the metabolic profiles of three time points can be distinquished in the scores plot of principal component analysis. The fast and robust method appears to be applicable to detect changes in fatty acids in plasma samples. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:30:37Z (GMT). No. of bitstreams: 1 ntu-101-R98423015-1.pdf: 873571 bytes, checksum: c2d8b66e4685087a74c90bf99c58225b (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目 錄
中文摘要………………………………………………………………………………I 英文摘要……………………………………………………………………………...II 內文目錄…………………………………………………………………………….III 內文目錄 壹、序論 1.1 脂質代謝體學------------------------------------------------------------------------1 1.2 脂質分類及命名法------------------------------------------------------------------1 1.3 脂質分析方法------------------------------------------------------------------------3 貳、引言-------------------------------------------------------------------------------------------4 2.1 脂肪酸在疾病的重要性------------------------------------------------------------4 2.2脂肪酸分類與命名方法-------------------------------------------------------------4 2.3 現有分析脂肪酸的方法------------------------------------------------------------5 參、研究背景-------------------------------------------------------------------------------------7 3.1脂肪酸的重要性----------------------------------------------------------------------7 3.2 主要分析平台比較------------------------------------------------------------------7 3.3氣相層析分析方法開發重點--------------------------------------------------------8 肆、研究目的-----------------------------------------------------------------------------------12 伍、實驗部份----------------------------------------------------------------------------------13 5.1試劑------------------------------------------------------------------------------------13 5.2儀器------------------------------------------------------------------------------------13 5.3 GC-MS分析條件-------------------------------------------------------------------14 5.4標準品溶液製備---------------------------------------------------------------------14 5.5空白血漿製備------------------------------------------------------------------------15 5.6檢品溶液製備------------------------------------------------------------------------15 5.7衍生化方法---------------------------------------------------------------------------15 5.8 大鼠心跳停止並急救復甦的動物急救研究----------------------------------18 陸、結果 6.1 脂肪酸的萃取-----------------------------------------------------------------------18 6.2 GC-MS分析方法的最佳化-------------------------------------------------------20 6.3 衍生化方法的選擇-----------------------------------------------------------------23 6.4 分析方法的應用--------------------------------------------------------------------25 6.5 結論與未來展望--------------------------------------------------------------------26 柒、參考文獻-----------------------------------------------------------------------------------27 圖目錄 Fig 1. 不同管柱對於市售37酯化脂肪酸的層析圖-------------------------------------32 Fig 2. 三種升溫條件對(A)血漿樣品(B) 37個酯化脂肪酸與(C)25種脂肪酸標準品GC-MS圖譜------------------------------------------------------------------------------------33 Fig 3. 四種衍生化方法對26個內生性脂肪酸標準品訊號強度比較(n=3)---------36 Fig 4. 五種衍生化試劑對血漿樣品衍生化之訊號強度比較(n=3)-------------------37 Fig 5. 大鼠急救前、急救當下與急救後一小時之PCA scores plot -----------------38 Fig 6. 急救前、急救當下與急救後一小時之Heatmap -------------------------------39 Fig 7. 25個具有統計上顯著意義脂肪酸之箱形圖(boxplots)-------------------------41 表目錄 Table 1. 現有脂質資料庫-------------------------------------------------------------------42 Table 2. 脂肪酸編號與常用命名----------------------------------------------------------43 Table 3. 脂肪酸酸性與鹼性衍生試劑優缺比較----------------------------------------45 Table 4. 五種衍生化方法耗費時間與金錢比較----------------------------------------45 Table 5. 五種衍生化試劑優缺點比較----------------------------------------------------46 Table 6. 各種萃取方法的比較-------------------------------------------------------------48 Table 7. 二十六種脂肪酸標準品一日之內重覆性-------------------------------------49 Table 8. 脂肪酸定量離子、滯留時間與定性離子-------------------------------------50 Table 9. 五種衍生試劑衍生血漿樣品一日之內重覆性-------------------------------52 Table 10. 五種衍生化試劑衍生血漿樣品一日內相對標準偏差範圍的比較------53 Table 11. Acetyl chloride 與Boron trifluoride 衍生26種脂肪酸的標準品於異日間之再現性----------------------------------------------------------------------------------------54 Table 12. Acetyl chloride 與Boron trifluoride 兩衍生方法於血漿樣品一日內與異日間之再現性----------------------------------------------------------------------------------55 Table 13. Acetyl chloride 與Boron trifluoride 兩種衍生化方法衍生血漿樣品相對標準偏差範圍的比較-------------------------------------------------------------------------56 Table 14. 三個時間點中具有顯著差異的脂肪酸---------------------------------------57 | |
dc.language.iso | zh-TW | |
dc.title | 建立氣相層析質譜儀分析血漿中脂肪酸代謝體圖譜之方法 | zh_TW |
dc.title | Development of a gas chromatography-mass spectrometry method for metabolic profiling of fatty acid in plasma | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇慧敏(HM Su),吳信隆(HL Wu) | |
dc.subject.keyword | 脂肪酸,氣相層析質譜儀,SLB-IL82,脂質萃取,代謝體圖譜, | zh_TW |
dc.subject.keyword | fatty acids,GC-MS,SLB-IL82,lipid extraction,metabolic profile, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 853.1 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。