請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66296完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林坤佑(Kun-You Lin) | |
| dc.contributor.author | Chao-Hsiuan Tsay | en |
| dc.contributor.author | 蔡兆璿 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:29:12Z | - |
| dc.date.available | 2015-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-14 | |
| dc.identifier.citation | [1] “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” FCC, Washington, DC, ET Docket 98-153, Feb 14. 2002.
[2] http://wireless.fcc.gov/services/index.htm?job=service_home&id=lmds [3] http://wireless.fcc.gov/auctions/data/bandplans/lmds.pdf [4] http://wireless.fcc.gov/services/index.htm?job=service_home&id=39ghz [5] http://wireless.fcc.gov/auctions/data/bandplans/39band.pdf [6] http://www.fcc.gov/encyclopedia/ka-band-permitted-space-station-list [7] S. Mahon, A. Dadello, J. Harvey, and A. Bessemoulin, “A family of 1, 2 and 4-watt power amplifier MMICs for cost effective VSAT ground terminals,” in IEEE Compound Semicond. Integr. Circuits Symp. (CSICS), Oct. 2005, pp. 224-227. [8] M. K. Siddiqui, A. K. Sharma, L. G. Callejo, C. H. Chen, K. Tan, and H. C. Yen, “A high power and high efficiency power amplifier for local multipoint distribution service,” in IEEE MTT-S Int. Symp. Dig., Jun. 1996, vol. 2, pp. 701-704. [9] Sheng-Ming Luo, Ruei-Yun Hung, Shou-Hsien Weng, Yan-Liang Ye, Chia-Ning Chuang, Chi-Hsien Lin, and Hong-Yeh Chang, “24-GHz MMIC development using 0.15-um GaAs pHEMT process for automotive radar applications,” in IEEE Asia-Pacific Microwave Conference (APMC), Dec. 2008, pp. 1-4. [10] M. Komaru, H. Hoshi, H. Kurusu,Y. Notani, T. Katoh, T. Ishida, T. Oku, T. Ishikawa, and Y. Mitsui, “1 watt compact Ka-Band MMIC power amplifieirs using lumped element matching circuits,” in IEEE MTT-S Int. Symp. Dig., Jun. 1998, vol. 3, pp. 1659-1662. [11] Francois Y. Colomb and Aryeh Platzker, “2 and 4 watt Ka-band GaAs PHEMT power amplifier MMICs,” in IEEE MTT-S Int. Symp. Dig., Jun. 2003, vol. 2, pp. 843-846. [12] M. V. Aust, B. Allen, G. S. Dow, R. Kasody, G. Luong, M. Biedenbender, and K. Tan, “A Ka-band HEMT MMlC 1 watt power amplifier,” in IEEE Microw. and Millimeter-Wave Monolithic Symp. Circuits Dig., June 1993, pp. 45–48 [13] Jeng-Han Tsai, Yi-Lin Lee, Tian-Wei Huang, Cheng-Ming Yu, and John G. J. Chern, “A 90-nm CMOS Broadband and Miniature Q-band Balanced Medium Power Amplifier,” in IEEE MTT-S Int. Symp. Dig., Jun. 2007, pp. 1129-1132. [14] Jeng-Han Tsai, Wei-Chien Chen, To-Po Wang, Tian-Wei Huang, and Huei Wang, “A miniature Q-band low noise amplifier using 0.13-m CMOS technology,” in IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 327-329, June, 2006. [15] Frank Ellinger, “26-42 GHz SOI CMOS low noise amplifier,” in IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, March 2004. [16] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Artech House, 1999. [17] Guillermo Gonzalez, Microwave Transistor Amplifiers - Analysis and Design, 2nd ed., Prentice Hall, 1996. [18] M. Mochizuki, M. Nakayama, Y. Tarui, Y. Itoh, S. Tsuji, and T. Takagi, “Nonlinear analysis of f0/2 loop oscillation of high power amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1995, vol2, pp. 709-712. [19] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1992, vol. 1, pp. 297-300. [20] Shinya Mizuno, Kohei Naito, Yasunori Tateno, Seigo Sano and Tsuneo Tokumitsu, “Novel instability-probing simulation for power amplifiers,” in IEEE European Microwave Conference (EuMC), Sep. 2006, pp. 1284-1287. [21] Douglas Teeter, Aryeh Platzker, and Ron Bourque, “A compact network for eliminating parametric oscillations in high power MMIC amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1999, vol. 3, pp. 967-970. [22] David M. Pozar, Microwave Engineering, 3rd ed., Wiley, 2005. [23] Guan-Jie Huang, Design of K-band CMOS gain boosting low noise amplifier and V-band GaAs pHEMT cascode balance power amplifier, M.S. Thesis, National Taiwan University, Feb., 2011. [24] “Transistor and Amplifier Modeling Methods for Microwave Design,” class notes for MTT Society of the IEEE Long Island Section, Department of Electrical Engineering, University of South Florida, October 2008. [25] William, Clausen, Small and large signal modeling of MM-Wave MHEMT devices, M.S. Thesis, University of South Florida, June, 2003. [26] intersil, Appl. Note 1325, pp. 1-10. [27] “RF Design Intuitions,” class notes for RFVLSI Design, Department of Electrical Engineering, University of Chiao Tung, February 2011. [28] Jacques Audet, “Q Calculations of L-C Circuits and Transmission Lines: A Unified Approach,” in ARRL QEX., Sep. 2006, pp. 43-51. [29] Almudena Suarez, Sanggeun Jeon, and David B. Rutledge, “Stability Analysis and Stabilization of Power Amplifiers,” in IEEE MTT-S Int. Microwave Magazine, Oct. 2006, vol. 7, pp. 51-65. [30] Almudena Suarez, and Raymond Quere, Stability Analysis of Nonlinear Microwave Circuits, Artech House, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66296 | - |
| dc.description.abstract | 大部分已發表的Ka頻段寬頻功率放大器功率頻寬都是窄頻的,但寬頻功率放大器在大訊號操作下應該也要是寬頻的,而不是僅由增益與返回損耗認定。這篇論文提出了在Ka頻段的射頻功率放大器以及緩衝放大器之研究。為了驗證電路設計的方法,我們設計並實作了兩個Ka頻段放大器。
我們介紹了一個20 dBm單晶微波積體電路功率放大器,它的操作頻率涵蓋了整個Ka頻段,製程使用砷化鎵假型高速電子移動電晶體,並採用了疊接組態以提供高增益。量測中出現了振盪,可使用晶片外旁路電容以及調高共閘極電晶體的閘極端偏壓消去振盪。量測結果顯示輸出功率1 dB功率壓縮點為19.3 dBm,功率附加效益15.5%以上;在整個Ka頻段中量測的峰值功率附加效益達到22.5%,並有22.7 dBm的飽和輸出功率。因為量測結果和模擬相去甚遠,我們發現是電晶體模型在操作的偏壓不精確,因而提出了修正過的模型。因為電路有振盪的問題,所以我們提出了Q值的分析以穩定電路,並重新設計了放大器。 我們使用65奈米CMOS製程設計並製造了一個頻寬27-34 GHz的緩衝放大器,量測結果顯示輸出功率1 dB功率壓縮點為7.7 dBm,此時能維持21.8 dB的小訊號功率增益,以及13%以上的功率附加效益,峰值功率附加效益達到23.3%並有10.6 dBm的飽和輸出功率。這在所知已發表的Ka頻段緩衝放大器中有最寬的功率頻寬。 | zh_TW |
| dc.description.abstract | Most reported broadband power amplifiers in Ka band have narrowband power characteristics. A broadband power amplifier should have wideband characteristics which include not only gain and return losses but also power performance. In this dissertation, the design and analysis of broadband amplifiers is demonstrated. To verify the proposed method, two Ka-band amplifiers are designed and implemented.
A full Ka-band 20-dBm power amplifier is implemented in 0.15-um GaAs pHEMT technology. The cascode configuration is adopted to provide higher gain. Spurious oscillations are observed in measurement and can be suppressed by off-chip bypass and raising the gate bias of CG transistor. The measurement result shows a power added efficiency (PAE) at 1-dB compression point (P1dB) up to 15.5% and 19.3-dBm OP1dB. Peak PAE higher than 22.5% and saturation output power (Psat) higher than 22.7 dBm are obtained at 27 GHz. Since the measurement results differ from simulation, we find that the transistor model is not precise at the desired bias, thus a modified model is introduced. Because the amplifier suffers from oscillations, the Q factor of bypass network is analyzed to stabilize the amplifier, and the proposed amplifier is redesigned. A 27-34 GHz buffer amplifier (BA) is fabricated in 65-nm CMOS process. The measurement results show a PAE at P1dB up to 13% while maintaining 21.8-dB gain and 7.7-dBm OP1dB at 30 GHz. The peak PAE and Psat are higher than 23.3% and 10.6 dBm, respectively. To the best of our knowledge, the 27-34 GHz BA has the highest PAE among reported Ka-band CMOS BAs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:29:12Z (GMT). No. of bitstreams: 1 ntu-101-R98942022-1.pdf: 22591944 bytes, checksum: fc940409aa1c3ddc66d51bb29aa6eaa8 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xviii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 5 1.3 Contributions 9 1.4 Thesis Organization 10 Chapter 2 Fundamental Theory of Power Amplifier 11 2.1 Specifications of Power Amplifier 12 2.2 Linearity Characterization 14 2.3 Classification of Power Amplifiers 15 2.4 Stability Issues 16 2.5 Power Combining 22 Chapter 3 A Full Ka-band 0.15-um pHEMT Cascode Power Amplifier 3.1 Introduction 27 3.2 Design Methodology 28 3.3 Simulation Results 51 3.4 Measurement Results 60 3.5 Debug 75 3.6 Modeling of pHEMT CPW Transistors 83 3.7 Bypass Design and Q-Factor 94 3.8 Harmonic Balance Analysis with Auxiliary Generator 116 3.9 Redesign of the Full Ka-Band Cascode Power Amplifier 121 3.10 Summary 136 Chapter 4 A 27-34 GHz 65-nm CMOS Buffer Amplifier 138 4.1 Introduction 138 4.2 Design Methodology 139 4.3 Simulation Results 151 4.4 Measurement Results 158 4.5 Discussion and Summary 163 Chapter 5 Conclusions 167 REFERENCE 168 | |
| dc.language.iso | en | |
| dc.subject | 高功率附加效益 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | Ka頻段 | zh_TW |
| dc.subject | pHEMT | zh_TW |
| dc.subject | CMOS | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 高功率附加效益 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | CMOS | zh_TW |
| dc.subject | pHEMT | zh_TW |
| dc.subject | Ka頻段 | zh_TW |
| dc.subject | Broadband | en |
| dc.subject | Power Amplifier | en |
| dc.subject | High PAE | en |
| dc.subject | Ka Band | en |
| dc.subject | pHEMT | en |
| dc.subject | CMOS | en |
| dc.subject | Broadband | en |
| dc.subject | Power Amplifier | en |
| dc.subject | High PAE | en |
| dc.subject | Ka Band | en |
| dc.subject | pHEMT | en |
| dc.subject | CMOS | en |
| dc.title | Ka頻段寬頻功率放大器之研究 | zh_TW |
| dc.title | Research on Broadband Power Amplifiers in Ka Band | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張鴻埜(Hong-Yeh Chang),蔡作敏(Zou-Min Tsai),蔡政翰(Jeng-Han Tsai),吳佩?(Pei-Si Wu) | |
| dc.subject.keyword | 功率放大器,高功率附加效益,Ka頻段,pHEMT,CMOS,寬頻, | zh_TW |
| dc.subject.keyword | Power Amplifier,High PAE,Ka Band,pHEMT,CMOS,Broadband, | en |
| dc.relation.page | 171 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 22.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
