Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復
dc.contributor.authorChih-Cheng Hsuen
dc.contributor.author許智程zh_TW
dc.date.accessioned2021-06-17T00:29:01Z-
dc.date.available2012-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-14
dc.identifier.citation[1] G. Acar and A. Adams, “ACMENet: An Underwater Acoustic Sensor Network Protocol for Real-time Environmental Monitoring in Coastal Areas,” IEE Proceedings of Radar, Sonar and Navigation, vol. 153, no. 4, pp. 365–380, august 2006.
[2] J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “The Challenges of Building Mobile Underwater Wireless Networks for Aquatic Applications,” Network, IEEE, vol. 20, no. 3, pp. 12 – 18, may-june 2006.
[3] J. Heidemann,W. Ye, J.Wills, A. Syed, and Y. Li, “Research Challenges and Applications for Underwater Sensor Networking,” in WCNC’06: IEEE Wireless Communications and Networking Conference, april 2006, pp. 228–235.
[4] I. Akyildiz, D. Pompili, and T. Melodia, “Underwater Acoustic Sensor Networks: Research Challenges,” Ad Hoc Networks, vol. 3, no. 3, pp. 257–279, 2005.
[5] “http://acomms.whoi.edu/umodem/.”
[6] LinkQuest, “http://www.link-quest.com/.”
[7] I. F. Akyildiz, T.Melodia, and K. R. Chowdhury, “A Survey onWirelessMultimedia Sensor Networks,” Computer Networks, vol. 51, no. 4, pp. 921–960, 2007.
[8] L.-C. Kuo and T. Melodia, “Medium Access Control for Underwater Acoustic Sensor Networks with MIMO Links,” in MSWiM’09: Proceedings of the 12th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, 2009, pp. 204–211.
[9] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin, “Coping with Irregular Spatiotemporal Sampling in Sensor Networks,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 125–130, January 2004.
[10] R. Cristescu and M. Vetterli, “On the Optimal Density for Real-time Data Gathering of Spatio-temporal Processes in Sensor Networks,” in IPSN’05: Proceedings of the 4th international symposium on Information processing in sensor networks. IEEE Press, april 2005, pp. 159 – 164.
[11] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Quality of Field Reconstruction in Sensor Networks,” in INFOCOM’07: 26th IEEE International Conference on Computer Communications, may 2007, pp. 2406–2410.
[12] A. Nordio and C.-F. Chiasserini, “Field Reconstruction in Sensor Networks With Coverage Holes and Packet Losses,” Signal Processing, IEEE Transactions on, vol. 59, no. 8, pp. 3943–3953, aug. 2011.
[13] D. Pompili, T. Melodia, and I. F. Akyildiz, “Routing Algorithms for Delayinsensitive and Delay-sensitive Applications in Underwater Sensor Networks,” in MobiCom’06: Proceedings of the 12th ACM annual international conference on Mobile computing and networking, 2006, pp. 298–309.
[14] Z. Zhou and J.-H. Cui, “Energy Efficient Multi-path Communication for Timecritical Applications in Underwater Sensor Networks,” in MobiHoc’08: Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, 2008, pp. 221–230.
[15] S. Gopi, K. Govindan, D. Chander, U. Desai, and S. Merchant, “E-PULRP: Energy Optimized Path Unaware Layered Routing Protocol for Underwater Sensor Networks,” Wireless Communications, IEEE Transactions on, vol. 9, no. 11, pp. 3391–3401, november 2010.
[16] M. Zorzi, P. Casari, N. Baldo, and A. Harris, “Energy-Efficient Routing Schemes for Underwater Acoustic Networks,” Selected Areas in Communications, IEEE Journal on, vol. 26, no. 9, pp. 1754 –1766, december 2008.
[17] M. Molins and M. Stojanovic, “Slotted FAMA: A MAC Protocol for Underwater Acoustic Networks,” in OCEANS-Asia Pacific, 2006, pp. 1–7.
[18] X. Guo, M. Frater, and M. Ryan, “A Propagation-Delay-Tolerant Collision Avoidance Protocol for Underwater Acoustic Sensor Networks,” in OCEANS-Asia Pacific, 2006, pp. 1–6.
[19] N. Chirdchoo, W. Soh, and K. Chua, “Aloha-based MAC Protocols with Collision Avoidance for Underwater Acoustic Networks,” in INFOCOM’07: 26th IEEE International Conference on Computer Communications, may 2007, pp. 2271–2275.
[20] A. A. Syed, W. Ye, and J. Heidemann, “T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks,” in INFOCOM’08: 27th IEEE International Conference on Computer Communications, april 2008, pp. 231 –235.
[21] G. Xie and J. Gibson, “A Networking Protocol for Underwater Acoustic Networks,”in Technical Report TR-CS-00-02, Department of Computer Science, Naval Postgraduate School, December 2000.
[22] X. L. Huang and B. Bensaou, “On Max-min Fairness and Scheduling in Wireless Ad-hoc Networks: Analytical Framework and Implementation,” in MobiHoc’01: Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking and computing, 2001, pp. 221–231.
[23] G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, and T. F. Abdelzaher, “MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks,” in INFOCOM’06: 25th IEEE International Conference on Computer Communications, april 2006, pp. 1–13.
[24] L. Tassiulas and S. Sarkar, “Maxmin Fair Scheduling inWireless Ad-hoc Networks,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 1, pp. 163–173, Jan. 2005.
[25] A. Rao and I. Stoica, “AdaptiveDistributed Time-Slot Based Scheduling for Fairness in Multi-Hop Wireless Networks,” in ICDCS’08: 28th IEEE International Conference on Distributed Computing Systems, June 2008, pp. 874–882.
[26] K. Miller and T. Harks, “Utility Max-Min Fair Congestion Control with Time-Varying Delays,” in INFOCOM’08: 27th IEEE International Conference on Computer Communications, April 2008, pp. 331–335.
[27] I. Holyer, “The NP-Completeness of Edge-Colouring,” SIAM J. COMPUT, vol. 10, no. 4, pp. 718–720, 1981.
[28] W. Ye, J. Heidemann, and D. Estrin, “An Energy-efficient MAC Protocol for Wireless Sensor Networks,” in INFOCOM’02: Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 2002, pp. 1567– 1576.
[29] M. Cheng and L. Yin, “Transmission Scheduling in Sensor Networks via Directed Edge Coloring,” ICC’07: IEEE International Conference on Communications, pp. 3710–3715, june 2007.
[30] J. Rice, B. Creber, C. Fletcher, P. Baxley, K. Rogers, K. McDonald, and D. Rees,“Evolution of Seaweb Underwater Acoustic Networking,” in OCEANS MTS/IEEE Conference and Exhibition, vol. 3, 2000, pp. 2007–2017.
[31] H. X. Tan and W. K. G. Seah, “Distributed CDMA-based MAC Protocol for Underwater Sensor Networks,” in LCN’07: Proceedings of the 32nd IEEE Conference on Local Computer Networks, oct. 2007, pp. 26–36.
[32] I. Kurtis B. Kredo and P. Mohapatra, “A Hybrid Medium Access Control Protocol for Underwater Wireless Networks,” in WuWNet’07: Proceedings of the second ACM workshop on Underwater networks, 2007, pp. 33–40.
[33] M. Park and V. Rodoplu, “UWAN-MAC: An Energy-Efficient MAC Protocol for Underwater AcousticWireless Sensor Networks,” Oceanic Engineering, IEEE Journal of, vol. 32, no. 3, pp. 710–720, 2007.
[34] A. Syed and J. Heidemann, “Time Synchronization for High Latency Acoustic Networks,”in INFOCOM’06: 25th IEEE International Conference on Computer Communications, april 2006, pp. 1 –12.
[35] D. Fober, Y. Orlarey, and S. Letz, “Clock Skew Compensation over a High Latency Network,” in Proceedings of the International Computer Music Conference, 2002, pp. 548–552.
[36] Y. Jian and S. Chen, “Can CSMA/CA Networks be Made Fair?” in MobiCom’08: Proceedings of the 14th ACM annual international conference on Mobile computing and networking, 2008, pp. 235–246.
[37] S. Biswas and R. Morris, “ExOR: Opportunistic Multi-hop Routing for Wireless Networks,” in SIGCOMM’05: Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications. ACM, 2005, pp. 133–144.
[38] S. Chachulski,M. Jennings, S. Katti, and D. Katabi, “Trading Structure for Randomness inWireless Opportunistic Routing,” in SIGCOMM’07: Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications. ACM, 2007, pp. 169–180.
[39] K. Zeng, W. Lou, and H. Zhai, “On End-to-End Throughput of Opportunistic Routing in Multirate and Multihop Wireless Networks,” in INFOCOM’08: 27th IEEE International Conference on Computer Communications, april 2008, pp. 816–824.
[40] R. Laufer, H. Dubois-Ferriere, and L. Kleinrock, “Multirate Anypath Routing in Wireless Mesh Networks,” in INFOCOM’09: 28th IEEE International Conference on Computer Communications, april 2009, pp. 37 –45.
[41] K. Zeng, Z. Yang, andW. Lou, “Opportunistic Routing inMulti-radioMulti-channel Multi-hop Wireless Networks,” in INFOCOM’10: 29th IEEE International Conference on Computer Communications, march 2010, pp. 1 –5.
[42] K. Zeng, W. Lou, J. Yang, and D. R. Brown, III, “On Throughput Efficiency of Geographic Opportunistic Routing in MultihopWireless Networks,” Mob. Netw. Appl., vol. 12, pp. 347–357, December 2007.
[43] K. Zeng, W. Lou, J. Yang, and D. R. I. Brown, “On Geographic Collaborative Forwarding inWireless Ad Hoc and Sensor Networks,” inWASA’07: Proceedings of the International Conference on Wireless Algorithms,Systems and Applications. IEEE Computer Society, 2007, pp. 11–18.
[44] K. Zeng, W. Lou, and Y. Zhang, “Multi-Rate Geographic Opportunistic Routing in Wireless Ad Hoc Networks,” in MILCOM’07: IEEE Military Communications Conference, oct. 2007, pp. 1 –7.
[45] M. C.-C. Hung, K. C.-J. Lin, C.-F. Chou, and C.-C. Hsu, “EFFORT: Energy-efficient Opportunistic Routing Technology inWireless Sensor Networks,” Wireless Communications and Mobile Computing, 2011.
[46] L. Cheng, J. Cao, C. Chen, J.Ma, and S. Das, “Exploiting Geographic Opportunistic Routing for Soft QoS Provisioning in Wireless Sensor Networks,” in MASS’10: 7th IEEE International Conference on Mobile Adhoc and Sensor Systems, nov. 2010, pp. 292 –301.
[47] P. Xie, J.-H. Cui, and L. Lao, “VBF: Vector-Based Forwarding Protocol for Underwater Sensor Networks,” in NETWORKING’06: Proceedings of the 5th international IFIP-TC6 networking conference on AdHoc and sensor networks, wireless networks, next generation internet, 2006, pp. 1216–1221.
[48] H. Yan, Z. J. Shi, and J.-H. Cui, “DBR: Depth-based Routing for Underwater Sensor Networks,” in NETWORKING’08: Proceedings of the 7th international IFIP-TC6 networking conference on AdHoc and sensor networks, wireless networks, next generation internet, 2008, pp. 72–86.
[49] U. Lee, P. Wang, Y. Noh, L. Vieira, M. Gerla, and J.-H. Cui, “Pressure Routing for Underwater Sensor Networks,” in INFOCOM’10: 29th IEEE International Conference on Computer Communications, march 2010, pp. 1–9.
[50] A. Harris III and M. Zorzi, “Modeling the Underwater Acoustic Channel in NS2,” in ValueTools’07: Proceedings of the 2nd international conference on Performance evaluation methodologies and tools. ICST (Institute for Computer Sciences, Social Informatics and Telecommunications Engineering), 2007, pp. 18:1–18:8.
[51] H. Shi, D. Kruger, and J. V. Nickerson, “Incorporating Environmental Information into Underwater Acoustic Sensor Coverage Estimation in Estuaries,” in MILCOM’07: IEEE Military Communications Conference, oct. 2007, pp. 1–7.
[52] R. Jurdak, P. Aguiar, P. Baldi, and C. Lopes, “Software Modems for Underwater Sensor Networks,” in OCEANS-Europe, june 2007, pp. 1 –6.
[53] J. Liu, Z. Zhou, Z. Peng, and J.-H. Cui, “Mobi-Sync: Efficient Time Synchronization for Mobile Underwater Sensor Networks,” in GLOBECOM’10: IEEE Global Telecommunications Conference, dec. 2010, pp. 1 –5.
[54] W. Winston, Introduction to Mathematical Programming: Applications and Algorithms. Duxbury Resource Center, 2003.
[55] M. Samuel, S. Robert, F. M. J., and C. David, “Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor Networks,” in Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications, 2002, pp. 49–58.
[56] X. Yang, K. Ong, W. Dreschel, K. Zeng, C. Mungle, and C. Grimes, “Design of A Wireless Sensor Network for Long-term, In-situ Monitoring of An Aqueous Environment,” Sensors, vol. 2, no. 11, pp. 455–472, 2002.
[57] B. Zhang, G. Sukhatme, and A. Requicha, “Adaptive Sampling for MarineMicroorganism Monitoring,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp. 1115–1122.
[58] L. Freitag and M. Stojanovic, “Acoustic Communications for Regional Undersea Observatories,” in Proceedings of Oceanology International, march 2002.
[59] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Dover Publications Inc., 1998.
[60] B. Li, “End-to-End Fair Bandwidth Allocation in Multi-Hop Wireless Ad Hoc Networks,” in ICDCS’05: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, june 2005, pp. 471 –480.
[61] A. Raniwala, D. Pradipta, and S. Sharma, “End-to-End Flow Fairness Over IEEE 802.11-Based Wireless Mesh Networks,” in INFOCOM’07: 26th IEEE International Conference on Computer Communications, May 2007, pp. 2361–2365.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66292-
dc.description.abstractSince data in Underwater Sensor Networks (UWSNs) is transmitted by acoustic signals, the characteristics of a UWSN are different from those of a terrestrial sensor network. Specifically, due to the high propagation delay and the limited channel bandwidth of acoustic signals in UWSNs, current terrestrial approaches do not work well in UWSNs. Recently, there have been a variety of UWSN applications with different characteristics and goals, so this work focus on energy-efficient UWSN design for three different categories of UWSN applications: throughput-intensive, fair-data-collection, and delaysensitive applications. That is, we propose 3 different cross-layer UWSN modules: (a) an energy efficient MAC protocol for throughput-intensive applications, (b) a max-min fairness rate allocation scheme for fair-data-collection applications, and (c) an delay-aware opportunity-based routing approach for delay-sensitive applications.
For the sake of energy-efficient design, our idea is to first develop Spatial-Temporal Conflict Graph (ST-CG), which describes the conflict relationship among transmission links explicitly by considering the Spatial-Temporal Relationship, and is able to avoid collisions to perform efficient energy consumption. Based on ST-CG, we consider Spatial-Temporal Relationship in the design of a bandwidth-efficient TDMA-based MAC protocol for UWSNs. In order to obtain a theoretical bound for the TDMA-based MAC schedules of ST-CG, a Mixed Integer Linear Programming (MILP) model is derived.
To maximize the channel utilization for throughput-intensive applications, the TDMA-based scheduling problem in UWSNs is translated into a special vertex-coloring problem in the context of ST-CG. Then, we propose two novel heuristic approachs: (a) Traffic-based One-step Trial Approach (TOTA) to solve the coloring problem of ST-CG in a centralized fashion; and for scalability, (b) Distributed Traffic-based One-step Trial Approach (DTOTA) to assign data schedule in a distributed manner. Besides, a comprehensive performance study is presented, showing that the proposed MAC schedules TOTA and DTOTA can guarantee collision-free transmission and perform better than existing MAC schemes (such as S-MAC, ECDiG, and T-Lohi) in terms of the network throughput and energy consumption.
For fair-data-collection applications, we study themax-min fairness problemin UWSNs. Time Expanded Clique (TiE-Clique) is proposed to represent the clique relationships with the Spatial-Temporal Relationship. We also devise an algorithm and integer linear programming model to assign max-min fair rates. The simulation results demonstrate that, the proposed time expanded solution is able to achieve max-min fairness and have higher system throughput.
Finally, we exploit the idea of opportunistic-based routing to satisfy the requirements of delay-sensitive applications. Hence, by considering the propagation delays, a new routing scheme UWOR is proposed. Through extensive evaluations, we show that UWOR can improve the end-to-end goodput under deadline constraints.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:29:01Z (GMT). No. of bitstreams: 1
ntu-101-D95922022-1.pdf: 3285124 bytes, checksum: 3b35ad6194a96da47dc016daee4e8244 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Energy-Efficient MAC Protocol . . . . . . . . . . . . . . . . . . 5
1.3.2 Max-Min Fairness Rate Allocation Scheme . . . . . . . . . . . . 7
1.3.3 Delay-aware Opportunity-based Routing . . . . . . . . . . . . . 9
1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 MAC Protocols in UWSNs . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Fairness Rate Assignment in Terrestrial Scenarios . . . . . . . . . . . . . 17
2.3 Opportunistic Routing for Terrestrial Networks . . . . . . . . . . . . . . 18
2.4 Routing Schemes in UWSNs . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 3 Spatial-Temporal Conflict Graph and Optimization Model Formulation 22
3.1 ST-CG: Spatial-Temporal Conflict Graph . . . . . . . . . . . . . . . . . 22
3.1.1 Expression of Conflict Delay . . . . . . . . . . . . . . . . . . . 23
3.1.2 Conflict Relationship Discussion . . . . . . . . . . . . . . . . . . 24
3.2 Formulation of Optimization Model . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Propagation Delay Constraint . . . . . . . . . . . . . . . . . . . 28
3.2.2 Inter-frame Constraint (Frame Termination Constraint) . . . . . . 30
3.2.3 Splittable-Transmission Constraint . . . . . . . . . . . . . . . . . 31
Chapter 4 Centralized Spatial-Temporal MAC Scheduling in UWSNs . . . . . . 34
4.1 TOTA:Traffic-based One-step Trial Approach . . . . . . . . . . . . . . . 35
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Does the high propagation delay make a great impact on the performance
of Underwater MAC protocols? . . . . . . . . . . . . . 41
4.2.3 Can ST-CG consider Spatial-Temporal Relationship in UWSNs? . 43
4.2.4 What is the upper bound of TDMA-based MAC in UWSNs? . . . 46
4.2.5 Is TOTA an effective algorithm for computing MAC schedules in
UWSNs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.6 If it is difficult to get the information about the data rate, can
TOTA still perform better? . . . . . . . . . . . . . . . . . . . . . 50
4.3 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chapter 5 Distributed Spatial-Temporal MAC Scheduling in UWSNs . . . . . . 54
5.1 DTOTA:Distributed Traffic-based One-step Trial Approach . . . . . . . . 55
5.2 Analysis of DTOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Results and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Chapter 6 On Exploiting Spatial-Temporal Relationship in Max-Min Fairness in
UWSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Time Expanded Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 TiE-Clique: Time Expanded Clique . . . . . . . . . . . . . . . . 71
6.2.2 Max-min Fair Rate Assignment . . . . . . . . . . . . . . . . . . 73
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Chapter 7 UWOR: Opportunistic Routing for Delay-sensitive Applications in
UWSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 UWOR Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.1 Packet Forwarding Prioritization . . . . . . . . . . . . . . . . . . 86
7.2.2 Forwarding Set Determination . . . . . . . . . . . . . . . . . . . 87
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Chapter 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
dc.language.isoen
dc.title利用空間-時間關係性於水底感測器網路上之設計zh_TW
dc.titleOn Exploiting Spatial-Temporal Relationship in Design of Underwater Sensor Networksen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee林俊宏,黃仁紘,張英超,蔡明哲,逄愛君
dc.subject.keyword水底感測器網路,時槽分配式媒體存取控制協定,分散式媒體存取控制排程,最大-最小公平性,延遲感知的機率式路由,zh_TW
dc.subject.keywordunderwater sensor networks,TDMA-based MAC protocol,distributed MAC scheduling,max-min fairness,delay-aware opportunistic routing,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2012-02-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved