請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | |
| dc.contributor.author | Si-Wa Chan | en |
| dc.contributor.author | 陳詩華 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:28:09Z | - |
| dc.date.available | 2025-02-19 | |
| dc.date.copyright | 2020-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2020-02-10 | |
| dc.identifier.citation | [1] L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, “Global cancer incidence and mortality rates and trends—an update,” Cancer Epidemiology, Biomarkers & Prevention, vol. 25, no. 1, pp. 16–27, 2016.
[2] World Cancer Research Fund International, Breast cancer statistics, 2018, https://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics. [3] M. A. Helvie, L. K. Joynt, R. L. Cody, L. J. Pierce, D. D. Adler, and S. D. Merajver, “Locally advanced breast carcinoma: accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy.,” Radiology, vol. 198, no. 2, pp. 327–332, 1996. [4] B. E. Adrada, L. Huo, D. L. Lane, E. M. Arribas, E. Resetkova, and W. Yang, “Histopathologic correlation of residual mammo-graphic microcalcifications after neoadjuvant chemotherapy for locally advanced breast cancer,” Annals of Surgical Oncology, vol. 22, no. 4, pp. 1111–1117, 2015. [5] W. A. Berg and P. L. Gilbreath, “Multicentric and multifocal cancer: whole-breast us in preoperative evaluation,” Radiology, vol. 214, no. 1, pp. 59–66, 2000. [6] A. A. Tardivon, L. Ollivier, C. El Khoury, and F. Thibault, “Monitoring therapeutic efficacy in breast carcinomas,” European Radiology, vol. 16, no. 11, pp. 2549–2558, 2006. [7] R. Croshaw, H. Shapiro-Wright, E. Svensson, K. Erb, and T. Julian, “Accuracy of clinical examination, digital mammogram, ultrasound, and mri in determining postneoadjuvantpatho-logic tumor response in operable breast cancer patients,” Annals of Surgical Oncology, vol. 18, no. 11, pp. 3160–3163, 2011. [8] F. Pediconi, C. Catalano, A. Roselli et al., “The challenge of imaging dense breast parenchyma: is magnetic resonance mammography the technique of choice? A comparative study with x-ray mammography and whole-breast ultrasound,” Investigative Radiology, vol. 44, no. 7, pp. 412–421, 2009. [9] K. Vassiou, T. Kanavou, M. Vlychou et al., “Characterization of breast lesions with CE-MR multimodal morphological and kinetic analysis: Comparison with conventional mammography and high-resolution ultrasound,” European Journal of Radiology, vol. 70, no. 1, pp. 69–76, 2009. [10] M. E. Starver, C. E. Loo, E. J. Rutgers et al., “MRI-model to guide the surgical treatment in breast cancerpatients after neoadjuvant chemotherapy,” Annals of Surgery, vol. 251, no. 4, pp. 701–707, 2010. [11] G. L. G. Menezes, F. M. Knuttel, B. L. Stehouwer, R. M. Pijnappel, and M. A. A. J. Van Den Bosch, “Magnetic resonanceimaging in breast cancer: A literature review and future perspectives,” World Journal of Clinical Oncology, vol. 5, no. 2, pp. 61–70, 2014. [12] W. Huang, P. R. Fisher, K. Dulaimy, L. A. Tudorica, B. O’Hea, and T. M. Button, “Detection of breast malignancy: diagnostic MR protocol for improved specificity,” Radiology, vol. 232, no. 2, pp. 585–591, 2004. [13] R. M. L. Warren, L. Pointon, D. Thompson et al., “Reading protocol for dynamic contrast-enhanced MR images of the breast: sensitivity and specificity analysis,” Radiology, vol. 236, no. 3, pp. 779–788, 2005. [14] W. A. Berg, L. Gutierrez, M. S. NessAiver et al., “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology, vol. 233, no. 3, pp. 830–849, 2004. [15] N. H. G. M. Peters, I. H. M. BorelRinkes, N. P. A. Zuithoff, W. P. T. M. Mali, K. G. M. Moons, and P. H. M. Peeters, “Meta-analysis of MR imaging in the diagnosis of breast lesions,” Radiology, vol. 246, no. 1, pp. 116–124, 2008. [16] M. B. I. Lobbes, R. Prevos, M. Smidt et al., “The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadju-vant chemotherapy: A systematic review,” Insights into Imaging, vol. 4, no. 2, pp. 163–175, 2013. [17] C. E. Meacham and S. J. Morrison, “Tumour heterogeneity and cancer cell plasticity,” Nature, vol. 501, no. 7467, pp. 328–337, 2013. [18] S. Kul, A. Cansu, E. Alhan, H. Dinc, G. Gunes, and A. Reis, “Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors,” American Journal of Roentgenology, vol. 196, no. 1, pp. 210–217, 2011. [19] S. C. Partridge, H. Rahbar, R. Murthy et al., “Improved diagnostic accuracy of breast MRI through combined apparent diffusion coefficients and dynamic contrast-enhanced kinetics,” Magnetic Resonance in Medicine, vol. 65, no. 6, pp. 1759–1767, 2011. [20] S. Sinha, F. A. Lucas-Quesada, U. Sinha, N. DeBruhl, and L. W. Bassett, “In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization,” Journal of Magnetic Resonance Imaging, vol. 15, no. 6, pp. 693–704, 2002. [21] M. Iima, K. Yano, M. Kataoka et al., “Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions,” Investigative Radiology, vol. 50, no. 4, pp. 205–211, 2015. [22] D.-M. Koh, D. J. Collins, and M. R. Orton, “Intravoxel incoherent motion in body diffusion-weighted MRI: Reality and challenges,” American Journal of Roentgenology, vol. 196, no. 6, pp. 1351–1361, 2011. [23] X. Chen, W. Li, Y. Zhang, Q. Wu, Y. Guo, and Z. Bai, “Metaanalysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions,” BMC Cancer, vol. 10, article 693, 2010. [24] Y. Mazaheri, A. Afaq, D. B. Rowe, Y. Lu, A. Shukla-Dave, and J. Grover, “Diffusion-weighted magnetic resonance imaging of the prostate,” Journal of Computer Assisted Tomography, vol. 36, no. 6, pp. 695–703, 2012. [25] D. Le Bihan, E. Breton, D. Lallemand et al., “MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.” Radiology, vol. 161, no. 2, pp. 401–407, 1986. [26] D. Le Bihan, E. Breton, D. Lallemand, M.-L. Aubin, J. Vignaud, and M. Laval-Jeantet, “Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging,” Radiology, vol. 168, no. 2, pp. 497–505, 1988. [27] L. Bokacheva, J. B. Kaplan, D. D. Giri et al., “Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma,” Journal of Magnetic Resonance Imaging, vol. 40, no. 4, pp. 813–823, 2014. [28] C. Liu, C. Liang, Z. Liu, S. Zhang, and B. Huang, “Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional dwi,” European Journal of Radiology, vol. 82, no. 12, pp. e782–e789, 2013. [29] E. E. Sigmund, G. Y. Cho, S. Kim et al., “Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer,” Magnetic Resonance in Medicine, vol. 65, no. 5, pp. 1437–1447, 2011. [30] X. Mao, X. Zou, N. Yu, X. Jiang, and J. Du, “Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions,” Medicine, vol. 97, no. 26, p. e11109, 2018. [31] D. Ma, F. Lu, X. Zou et al., “Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions,” Magnetic Resonance Imaging, vol. 36, pp. 175–179, 2017. [32] M. W. Vannier, T. K. Pilgram, C. M. Speidel, L. R. Neumann, D. L. Rickman, and L. D. Schertz, “Validation of Magnetic Resonance Imaging (MRI) multispectral tissue classification,” Computerized Medical Imaging and Graphics, vol. 15, no. 4, pp. 217–223, 1991. [33]C.-I Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Springer Science and Business, Berlin/Heidelberg, Germany, 2003. [34] C.-I Chang, Hyperspectral Data Processing: Algorithm Design and Analysis, John Wiley & Sons, Hoboken, NJ, USA, 1st edition, 2013. [35] Y. C. Ouyang, H. M. Chen, J. W. Chai, C. Chen et al., “Band Expansion-Based Over-Complete Independent Component Analysis for Multispectral Processing of Magnetic Resonance Images,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 6, pp. 1666–1677, 2008. [36] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, NY, USA, 2006. [37] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, Hoboken, NJ, USA, 1973. [38] R. Hsuan and C.-I Chang, “Automatic spectral target recognition in hyperspectral imagery,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1232–1249, 2003. [39] X. Jiao, S. S. Shen, P. E. Lewis, and C.-I Chang, “Kernel-based constrained energy minimization (KCEM),” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, vol. 6966, p. 69661S, International Society for Optics and Photonics, Bellingham, WA, USA, 2008. [40] E. M. Charles-Edwards and N. M. de Souza, “Diffusionweighted magnetic resonance imaging and its application to cancer,” Cancer Imaging, vol. 6, no. 1, pp. 135–143, 2006. [41] H. Ren and C.-I. Chang, “A generalized orthogonal subspace projection approach to unsupervised multispectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 6, pp. 2515–2528. [42] J. C. Harsanyi, Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Seq uences, University of Maryland Baltimore County, 1993. [43] W. H. Farrand and J. C. Harsanyi, “Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho, through the use of a constrained energy minimization technique,” Remote Sensing of Environment, vol. 59, no. 1, pp. 64–76, 1997. [44] C.-I Chang, “Target signature-constrained mixed pixel classification for hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 5, pp. 1065–1081, 2002. [45] N. R. Pal and S. K. Pal, “Entropy: a new definition and its applications,”e Institute of Electrical and Electronics Engineers Systems, Man, and Cybernetics Society, vol. 21, no. 5, pp. 1260– 1270, 1991. [46] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. [47] C.-I Chang, K. Chen, J. Wang, and M. L. Althouse, “A relative entropy-based approach to image thresholding,” Pattern Recognition, vol. 27, no. 9, pp. 1275–1289, 1994. [48] C.-I Chang, Y. Du, J. Wang, S. M. Guo, and P. D. Thouin, “A survey and comparative study of entropic and relative entropic thresholding techniques,” IEE Proceedings Vision, Image Signal Process, vol. 153, no. 6, pp. 837-838, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66271 | - |
| dc.description.abstract | 乳腺癌是全球女性疾病和死亡的主要原因。由於傳統的乳腺X線攝影和超聲檢查的局限性,在過去的幾十年中,磁共振成像(MRI)已逐漸成為乳腺癌評估的一種重要的放射學方法。MRI不會出現與放射線暴露相關的問題,並具有出色的圖像分辨率和對比度。但是,缺點是需要注射顯影劑,該顯影劑對某些患者(例如患有慢性腎臟疾病的患者或孕婦和哺乳期婦女)有毒。大腦中釓沉積物的最新發現也令人關注。為了解決這些問題,本文開發了一種基於體素不相干運動(IVIM-)MRI的直方圖分析方法,該方法利用波段擴展過程(BEP)等幾種高光譜技術將多光譜圖像擴展為高光譜圖像並創建一個自動目標生成過程(ATGP)。在自動找到可疑目標後,使用內核約束能量最小化(KCEM)進行了進一步檢測。決策樹和直方圖分析透過對檢測到的病變進行定量分析來對乳腺組織進行分類,用於區分乳腺組織的三類:惡性腫瘤(即中央和周圍區域),囊腫和正常乳腺組織。實驗結果表明,基於IVIM-MRI的直方圖分析方法可以有效地區分這三種乳腺組織。 | zh_TW |
| dc.description.abstract | Breast cancer is a main cause of disease and death for women globally. Due to limitation of traditional mammography and ultrasonography, magnetic resonance imaging (MRI) has gradually become an important radiological method for breast cancer assessment over the past decades. MRI is free of problems related to radiation exposure and provides excellent image resolution and contrast. However, one disadvantage is the injection of contrast agent, which is toxic for some patients (such as patients with chronic renal disease or pregnant and lactating women). Recent findings of gadolinium deposits in the brain are also a concern. To address these issues, this dissertationdevelops an intravoxel incoherent motion- (IVIM-) MRI-based histogram analysis approach, which takes advantage of several hyperspectral techniques, such as band expansion process (BEP)which expands multispectral images to hyperspectral images and automatic target generation process (ATGP) which generates desired targets to be used for follow-upsupervised detection and classification. After automatically finding suspected targets by ATGP, target detection was further performed by kernel constrained energy minimization (KCEM). A decision tree and histogram analysis are then applied to classifying breast tissue via quantitative analysis for detected lesions, which can be classified into three categories of breast tissue: malignant tumors (i.e., central and peripheral zone), cysts, and normal breast tissues. The experimental results demonstrate that the proposed IVIM-MRI-based histogram analysis approach can effectively differentiate amongthese three breast tissue types. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:28:09Z (GMT). No. of bitstreams: 1 ntu-108-D00945016-1.pdf: 2179285 bytes, checksum: 9c352ec5c1474b5011f462991961f881 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES IX CHAPTER 1 1 INTRODUCTION 1 CHAPTER 2 4 BACKGROUND 4 2.1. Diffusion-Weighted Imaging 4 2.2. Intravoxel Incoherent Motion Imaging 6 2.3. Band Expansion Process 8 2.4. Automatic Target Generation Process 10 2.6. Kernel-Based Constrained Energy Minimization 12 2.7. Thresholding 15 2.8. Decision Tree 15 2.9. Non-parametric Non-uniform intensity Normalization 16 2.10 High pass filter 17 2.11 Sobel edge detector 17 2.13 Otsu’s method 18 CHAPTER 3 19 MATERIALS AND METHODS 19 3.1. Patient Selection 19 3.2. Experimental Materials 20 3.3. Preprocessing 22 3.4. Breast Regional Segmentation 23 3.5. Breast Lesion Tissue Detection 28 3.6. Quantitative Analysis 31 3.7. Histogram Analysis 32 3.8. Define Breast Tissue Classification by Decision Tree 34 CHAPTER 4 36 RESULTS AND DISCUSSION 36 4.1. Real Images Experiments 36 4.1.1. Mass 36 4.1.2. Non-Mass Tumor 37 4.1.3. Breast Cyst 37 CHAPTER 5 52 CONCLUSIONS 52 REFERENCES 54 | |
| dc.language.iso | en | |
| dc.subject | 譜角映射器 | zh_TW |
| dc.subject | 體素不相干運動 | zh_TW |
| dc.subject | 擴散加權成像 | zh_TW |
| dc.subject | 能帶擴展過程 | zh_TW |
| dc.subject | 自動目標生成過程 | zh_TW |
| dc.subject | 核約束能量最小化 | zh_TW |
| dc.subject | 雙指數和單指數 | zh_TW |
| dc.subject | 體素不相干運動 | zh_TW |
| dc.subject | 擴散加權成像 | zh_TW |
| dc.subject | 能帶擴展過程 | zh_TW |
| dc.subject | 自動目標生成過程 | zh_TW |
| dc.subject | 譜角映射器 | zh_TW |
| dc.subject | 核約束能量最小化 | zh_TW |
| dc.subject | 雙指數和單指數 | zh_TW |
| dc.subject | automatic target generation process | en |
| dc.subject | Intravoxel incoherent motion | en |
| dc.subject | biexponential and monoexponential | en |
| dc.subject | kernel constrained energy minimization | en |
| dc.subject | band expansion process | en |
| dc.subject | spectral angle mapper | en |
| dc.subject | Intravoxel incoherent motion | en |
| dc.subject | Diffusion-weighted imaging | en |
| dc.subject | band expansion process | en |
| dc.subject | automatic target generation process | en |
| dc.subject | spectral angle mapper | en |
| dc.subject | kernel constrained energy minimization | en |
| dc.subject | biexponential and monoexponential | en |
| dc.subject | Diffusion-weighted imaging | en |
| dc.title | 體內不連貫運動高光譜成像技術對乳腺腫瘤的檢測和分類 | zh_TW |
| dc.title | Breast Tumor Detection and Classification Using Intravoxel Incoherent Motion Hyperspectral Imaging Techniques | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 傅楸善,阮春榮,劉益瑞,歐陽彥杰,張建禕 | |
| dc.subject.keyword | 體素不相干運動,擴散加權成像,能帶擴展過程,自動目標生成過程,譜角映射器,核約束能量最小化,雙指數和單指數, | zh_TW |
| dc.subject.keyword | Intravoxel incoherent motion,Diffusion-weighted imaging,band expansion process,automatic target generation process,spectral angle mapper,kernel constrained energy minimization,biexponential and monoexponential, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU202000379 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
