Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66240
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑芬
dc.contributor.authorShih-Ying Tsaien
dc.contributor.author蔡世瑩zh_TW
dc.date.accessioned2021-06-17T00:26:52Z-
dc.date.available2017-03-02
dc.date.copyright2012-03-02
dc.date.issued2012
dc.date.submitted2012-02-15
dc.identifier.citation1. Albracht K, Arampatzis A, Baltzopoulos V, et al. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. Journal of Biomechanics 2008;41:2211-8.
2. Alix ME, Bates DK. A proposed etiology of cervicogenic headache: The neurophysiologic basis and anatomic relationship between the dura mater and the rectus posterior capitis minor muscle. Journal of Manipulative and Physiological Therapeutics 1999;22:534-9.
3. Amiri M, Jull G, Bullock-Saxton J. Measurement of upper cervical flexion and extension with the 3-space Fastrak measurement system: a repeatability study. The Journal of Manual & Manipulative Therapy 2003;11:6.
4. Amiri M, Jull G, Bullock-Saxton J. Measuring range of active cervical rotation in a position of full head flexion using the 3D Fastrak measurement system: an intra-tester reliability study. Manual Therapy 2003;8:176-9.
5. Aprill C, Axinn MJ, Bogduk N. Occipital headaches stemming from the lateral atlanto-axial(C1-2) joint, 2002:15-22.
6. Bansevicius D, Sjaastad O. Cervicogenic Headache: The Influence of Mental Load on Pain Level and EMG of Shoulder-Neck and Facial Muscles, 1996:372-8.
7. Bogduk N, Govind J. Cervicogenic headache: an assessment of the evidence on clinical diagnosis, invasive tests, and treatment. The Lancet Neurology 2009;8:959-68.
8. Bogduk N, Marsland A. The cervical zygapophysial joints as a source of neck pain. Spine 1988;13:610-7.
9. Cagnie B, Cools A, De Loose V, et al. Reliability and normative database of the Zebris cervical range-of-motion system in healthy controls with preliminary validation in a group of patients with neck pain. Journal of Manipulative & Physiological Therapeutics 2007;30:6.
10. Cassidy JD, Lopes AA, Yong-Hing K. The immediate effect of manipulation versus mobilization on pain and range of motion in the cervical spine: a randomized controlled trial. Journal of manipulative and physiological therapeutics 1992;15:570-5.
11. Cleland JA, Fritz JM, Childs JD. Psychometric properties of the Fear-Avoidance Beliefs Questionnaire and Tampa Scale of Kinesiophobia in patients with neck pain. Am J Phys Med Rehabil 2008;87:109-17.
12. Dhimitri K, Brodeur S, Croteau M, et al. Reliability of the cervical range of motion device in measuring upper cervical motion. The Journal of Manual & Manipulative Therapy 1998;6:6.
13. Dugailly PM, Sobczak S, Moiseev F, et al. Musculoskeletal modeling of the suboccipital spine: kinematics analysis, muscle lengths, and muscle moment arms during axial rotation and flexion extension. Spine (Phila Pa 1976) 2011;36:E413-22.
14. Dvorak J, Antinnes JA, Panjabi M, et al. Age and gender related normal motion of the cervical spine. Spine 1992;17:S393-8.
15. Dvorak J, Dvorak V, Schneider W. Manual medicine 1984 : results of the international seminar week in Fischingen, Switzerlanded. New York: Springer-Verlag, 1985.
16. Dvorak J, Froehlich D, Penning L, et al. Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine 1988;13:748-55.
17. En MC, Clair DA, Edmondston SJ. Validity of the Neck Disability Index and Neck Pain and Disability Scale for measuring disability associated with chronic, non-traumatic neck pain. Man Ther 2009;14:433-8.
18. Falla D, Jull G, Dall'Alba P, et al. An electromyographic analysis of the deep cervical flexor muscles in performance of craniocervical flexion. Phys.Ther. 2003;83:899-906.
19. Falla DL, Campbell CD, Fagan AE, et al. Relationship between cranio-cervical flexion range of motion and pressure change during the cranio-cervical flexion test. Manual Therapy 2003;8:92-6.
20. Fernandez-de-Las-Penas C, Alonso-Blanco C, Cuadrado ML, et al. Spinal manipulative therapy in the management of cervicogenic headache. Headache 2005;45:1260-3.
21. Frobin W, Leivseth G, Biggemann M, et al. Sagittal plane segmental motion of the cervical spine. A new precision measurement protocol and normal motion data of healthy adults. Clin Biomech 2002;17:11.
22. Gray H, Williams PL, Bannister LH. Gray's anatomy : the anatomical basis of medicine and surgeryed. New York: Churchill Livingstone, 1995.
23. Hack G, Koritzer R, Robinson W, et al. Anatomic Relation between the Rectus Capitis Posterior Minor Muscle and the Dura Mater. Spine 1995;20:2484-5.
24. Hack GDDDS, Hallgren RCP. Chronic Headache Relief After Section of Suboccipital Muscle Dural Connections: A Case Report. Headache 2004;44:84-9.
25. Haldeman S, Dagenais S. Cervicogenic headaches: a critical review. The spine journal : official journal of the North American Spine Society 2001;1:31-46.
26. Hall T, Chan HT, Christensen L, et al. Efficacy of a C1-C2 self-sustained natural apophyseal glide (SNAG) in the management of cervicogenic headache. Journal of Orthopaedic & Sports Physical Therapy 2007;37:100-7.
27. Hall T, Robinson K. The flexion-rotation test and active cervical mobility-A comparative measurement study in cervicogenic headache. Manual Therapy 2004;9:6.
28. Hall T, Robinson K, Fujinawa O. Intertester reliability and diagnostic validity of the cervical flexion-rotation test. J Manipulative Physiol Ther 2008;31:8.
29. Hallgren RC, Greenman PE, Rechtien JJ. Atrophy of suboccipital muscles in patients with chronic pain: a pilot study, 1994:1032-.
30. Henderson DJ, Dormon TM. Functional roentgenometric evaluation of the cervical spine in the sagittal plane. Journal of Manipulative & Physiological Therapeutics 1985;8:9.
31. Hides JA, Richardson CA, Jull GA. Magnetic resonance imaging and ultrasonography of the lumbar multifidus muscle. Comparison of two different modalities. Spine 1995;20:54-8.
32. Hodges PW, Pengel LH, Herbert RD, et al. Measurement of muscle contraction with ultrasound imaging. Muscle & Nerve 2003;27:682-92.
33. Humphreys BK, Shahar K, Bradley BH, et al. Investigation of connective tissue attachments to the cervical spinal dura mater, 2003:152-9.
34. International Headache S. International Classification of Headache Disorders. 2nd ed. Cephalalgia 2004;24 (Suppl.1):1-151.
35. Ishii T, Mukai Y, Hosono N, et al. Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Spine 2004;29:E139-44.
36. Jull G, Amiri M, Bullock-Saxton J, et al. Cervical musculoskeletal impairment in frequent intermittent headache. Part 1: Subjects with single headaches. Cephalalgia 2007;27:793-802.
37. Jull G, Barrett C, R. M, et al. Further clinical clarification of the muscle dysfunction in cervical headache. Cephalalgia 1999;19:7.
38. Jull G, Trott P, Potter H, et al. A Randomized Controlled Trial of Exercise and Manipulative Therapy for Cervicogenic Headache. Spine 2002;27:1835-43.
39. Kamibayashi LK, Richmond FJ. Morphometry of human neck muscles. Spine (Phila Pa 1976) 1998;23:1314-23.
40. Kanlayanaphotporn R, Chiradejnant A, Vachalathiti R. The immediate effects of mobilization technique on pain and range of motion in patients presenting with unilateral neck pain: a randomized controlled trial. Arch Phys Med Rehabil 2009;90:187-92.
41. Kettler A, Hartwig E, Schultheiss M, et al. Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens. J Biomech 2002;35:339-46.
42. Kristjansson E, Kristjansson E. Reliability of ultrasonography for the cervical multifidus muscle in asymptomatic and symptomatic subjects. Manual Therapy 2004;9:83-8.
43. Lantz CA, Klein G, Chen J, et al. A reassessment of normal cervical range of motion. Spine 2003;28:1249-57.
44. Lee JP, Tseng WY, Shau YW, et al. Measurement of segmental cervical multifidus contraction by ultrasonography in asymptomatic adults. Manual Therapy 2007;12:286-94.
45. Lin YJ, Chai HM, Wang SF, et al. Reliability of thickness measurements of the dorsal muscles of the upper cervical spine: an ultrasonographic study. Journal of Orthopaedic & Sports Physical Therapy 2009;39:850-7.
46. Lind B, Sihlbom H, Nordwall A, et al. normal range of motion of the cervical spine. Arch Phys Med Rehabil 1989;70:4.
47. Loram ID, Maganaris CN, Lakie M, et al. Paradoxical muscle movement in human standing. Journal of Physiology 2004;556:683-9.
48. MacDermid JC, Walton DM, Avery S, et al. Measurement properties of the neck disability index: a systematic review. J Orthop Sports Phys Ther 2009;39:400-17.
49. Maitland GD, Hengeveld E, Banks K, et al. Maitland's vertebral manipulationed. New York: Elsevier Butterworth-Heinemann, 2005.
50. Mannion AF, Klein GN, Dvorak J, et al. Range of global motion of the cervical spine: intraindividual reliability and the influence of measurement device. European Spine Journal 2000;9:379-85.
51. Martinez-Segura R, Fernandez-de-las-Penas C, Ruiz-Saez M, et al. Immediate effects on neck pain and active range of motion after a single cervical high-velocity low-amplitude manipulation in subjects presenting with mechanical neck pain: a randomized controlled trial. Journal of Manipulative & Physiological Therapeutics 2006;29:511-7.
52. McNair PJ, Portero P, Chiquet C, et al. Acute neck pain: cervical spine range of motion and position sense prior to and after joint mobilization. Manual Therapy 2007;12:390-4.
53. Moore MK. Upper crossed syndrome and its relationship to cervicogenic headache. Journal of Manipulative & Physiological Therapeutics 2004;27:414-20.
54. Mulligan BR. Manual therapy : 'NAGS', 'SNAGS', 'MWMS' etced. Minneapolis, MN: [Distributed by OPTP], 2004.
55. Mulligan BR. Manual Therapy: 'NAGS', 'SNAGS', 'MWM' etc. . 4th ed. Wellington, New Zealand: Plane View Services, 2006.
56. Nilsson N. The Prevalence of Cervicogenic Headache in a Random Population Sample of 20-59 Year Olds. Spine 1995;20:1884-8.
57. Nilsson N, Christensen HW, Hartvigsen J. The effect of spinal manipulation in the treatment of cervicogenic headache. Journal of Manipulative & Physiological Therapeutics 1997;20:326-30.
58. Nilsson N, Christensen HW, Hartvigsen J. Lasting changes in passive range motion after spinal manipulation: a randomized, blind, controlled trial. Journal of Manipulative & Physiological Therapeutics 1996;19:165-8.
59. Ogince M, Hall T, Robinson K, et al. The diagnostic validity of the cervical flexion-rotation test in C1/2-related cervicogenic headache. Man Ther 2007;12:256-62.
60. Olesen J. International Classification of Headache Disorders, Second Edition (ICHD-2): current status and future revisions. Cephalalgia 2006;26:1409-10.
61. Oliveira-Campelo NM, Rubens-Rebelatto J, Marti NVFJ, et al. The immediate effects of atlanto-occipital joint manipulation and suboccipital muscle inhibition technique on active mouth opening and pressure pain sensitivity over latent myofascial trigger points in the masticatory muscles. The Journal of orthopaedic and sports physical therapy 2010;40:310-7.
62. Ordway NR, Seymour RJ, Donelson RG, et al. Cervical flexion, extension, protrusion, and retraction: a radiographic segmental analysis. SPINE 1999;24:8.
63. Panjabi M, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine. Spine 1988;13:726-30.
64. Panjabi MM, Crisco JJ, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine (Phila Pa 1976) 2001;26:2692-700.
65. Penning L, Wilmink JT. Rotation of the Cervical Spine: A CT Study in Normal Subjects. Spine 1987;12:732-8.
66. Petersen SM. Articular and muscular impairments in cervicogenic headache: a case report. Journal of Orthopaedic & Sports Physical Therapy 2003;33:21-30; discussion -2.
67. Pfaffenrath V, Dandekar R, Mayer E, et al. Cervicogenic Headache: Results of Computer-Based Measurements of Cervical Spine Mobility in 15 Patients, 1988:45-8.
68. Reeves ND, Maganaris CN, Narici MV, et al. Ultrasonographic assessment of human skeletal muscle size. European Journal of Applied Physiology 2004;91:116-8.
69. Ruston SA. The use of diagnostic ultrasound to observe intersegmental joint motion in the neck. In Boyling JD, Palastanga N, Grieve GP eds. Grieve's modern manual therapy : the vertebral column. New York: Churchill Livingstone, 1994:39-52.
70. Shih YF, Bull AM, McGregor AH, et al. A technique for the measurement of patellar tracking during weight-bearing activities using ultrasound. Proceedings of the Institution of Mechanical Engineers Part H - Journal of Engineering in Medicine 2003;217:449-57.
71. Sjaastad O, Bakketeig LS. Prevalence of cervicogenic headache: Vaga study of headache epidemiology. Acta Neurologica Scandinavica 2008;117:173-80.
72. Sjaastad O, Fredriksen TA, Pfaffenrath V. Cervicogenic Headache: Diagnostic Criteria, 1998:442-5.
73. Swinkels-Meewisse EJ, Swinkels RA, Verbeek AL, et al. Psychometric properties of the Tampa Scale for kinesiophobia and the fear-avoidance beliefs questionnaire in acute low back pain. Man Ther 2003;8:29-36.
74. Vernon H. The Neck Disability Index: state-of-the-art, 1991-2008. J Manipulative Physiol Ther 2008;31:491-502.
75. Vlaeyen JW, Kole-Snijders AM, Boeren RG, et al. Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain 1995;62:363-72.
76. Wang SF, Chai HM, Lu TW. Comparison of Ranges of Cervical Motion Measured by Gravity-Based Goniometry and Ultrasound-Based Motion Analysis System. Formos J Phys Ther 2002;27:124-30.
77. Wang SF, Teng CC, Chai HM. Intra-rater reliability of measurement of cervical range of motion using an ultrasound-based motion analysis system. Formosan Journal of Physical Therapy 2003;28:181-8.
78. Wang SF, Teng CC, Lin KH. Measurement of cervical range of motion pattern during cyclic neck movement by an ultrasound-based motion system. Manual Therapy 2005;10:68-72.
79. Wang SF, Teng CC, Lin KW. Measurement of cervical pattern during cyclic neck movement by ultrasound-based motion system Manual Therapy 2004.
80. Whittingham W, Nilsson N. Active range of motion in the cervical spine increases after spinal manipulation (toggle recoil). Journal of Manipulative & Physiological Therapeutics 2001;24:552-5.
81. Wu JP, Lee JP, Mao HY, et al. Reliability of locating cervical spinal levels by palpation and ultrasonography. Formosan Journal of Physical Therapy 2005;30:80-7.
82. Yang C-H, Falla DL, Vicenzino B. Validity of angle measurement using digital camera. 12th Manipulative Physiotherapists Association of Australia (MPAA) Biennial Conference-More Than Skin Deep. South Australia, Australia, 2001.
83. Zito G, Jull G, Story I. Clinical tests of musculoskeletal dysfunction in the diagnosis of cervicogenic headache. Manual Therapy 2006;11:118-29.
84. Zito G, Jull G, Story I. Clinical tests of musculoskeletal dysfunction in the diagnosis of cervicogenic headache. Man Ther 2006;11:118-29.
85. Zwart JA. Neck mobility in different headache disorders. Headache 1997;37:6-11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66240-
dc.description.abstract背景:頸因性頭痛是由上頸椎肌肉骨骼問題所造成的頭痛,佔所有慢性頭痛比率的百分之二十,其特性是上頸椎關節活動度降低與疼痛 。比較頸因性頭痛患者與無症狀健康受試者的之上頸椎關節活動度的研究結果並無一致性。推測是因量測方法的限制。臨床上常採用筋膜鬆動術改善頸因性頭痛患者受限之上頸椎活動度,卻沒有研究採用量化的方法來評估筋膜鬆動術對上頸椎活動度的影響。
研究目的:1)建立以超音波動作分析系統測量上頸椎關節活動度之方法學並測試其信度;2) 建立以超音波影像測量頭顱與第一節頸椎的距離變化之方法學並測試其信度;3) 採用以上兩種方法,比較頸因性頭痛病人之上頸椎活動度與無症狀者之差異;4) 探討筋膜鬆動術對頸因性頭痛患者受限之上頸椎活動度的立即效果。
方法:本實驗使用超音波動作分析系統,以徒手固定的方式測量顱頸關節與寰樞關節的活動度(包含:矢狀面上低頭,抬頭與橫切面上的轉頭動作)。再利用超音波影像觀察頭頸屈曲活動時,頭顱與第一節頸椎間的距離變化(此參數代表其在矢狀面上的活動度)。信度測試收取無頸痛與頭痛症狀之受試者,測試間隔十五分鐘之再測信度。比較十五名頸因性頭痛患者與十五名無症狀受試者上頸椎活動度之表現。再以交叉研究,比較臨床上常使用之筋膜鬆動術,包含:下枕骨肌肉按壓及上頸椎徒手牽引與平躺休息十分鐘後,十位頸因性頭痛患者之上頸椎活動度的立即成效。信度分析以級內相關係數( Intra- class Correlation Coefficient, ICC 3,3)驗證。以independent t test、Mann-Whitney U test來檢驗頸因性頭痛組與無症狀組之差異。以重覆測量變異數分析(ANOVA with repeated measure)檢驗頸因性頭痛患者接受筋膜鬆動術與休息十分鐘前後,上頸椎活動度與與頭顱和第一節頸椎之距離變化。執行上頸椎活動測試時自覺動作僵硬程度在兩種介入前後的結果則以無母數分析中的Wilcoxon signed ranks test來分析。
結果:以超音波動作分析系統測量上頸椎關節活動度與以超音波測量頭顱與第一節頸椎動作變化,皆有良好之再測信度(ICC 3,3=0.85-0.97)。頭痛組與無症狀組之顱頸關節與寰樞關節活動度在四個方向皆無顯著差異;頭頸屈曲活動時,頭顱與第一節頸椎間的距離變化兩組有顯著差異(p<0.001)。予頸因性頭痛患者筋膜鬆動術與休息十分鐘後的結果比較,兩種介入對於上頸椎關節在矢狀面與橫切面上之活動度無顯著影響;但其頭顱與第一節頸椎間的距離變化之影響程度不同,事後分析顯示接受筋膜鬆動術有顯著差異(p<0.001)。執行上頸椎活動測試時,自覺動作僵硬程度在接受筋膜鬆動術後有顯著差異(p =0.008)。
結論:以超音波影像測量頭顱與第一節頸椎的動作變化可偵測出頸因性頭痛病人存在上頸椎活動度下降,以及其接受筋膜鬆動術對於原本下降之活動度的改善。本篇研究提供一個有別於先前採用放射線影像學來評估頭顱與第一節頸椎活動度的方法,可作為鑑別診斷與評估療效的工具;並證實筋膜鬆動術有增加上頸椎活動度的立即效果,可提供未來改善此類病人頭頸部動作型態的參考。
zh_TW
dc.description.abstractBackground: Cervicogenic headache is pain referred from musculoskeletal structure of neck, and the preference is 20% in population of patients with chronic headache. Restricted mobility and pain in upper cervical joints is one of the clinical features of cervicogenic headache. However, the results of previous studies those compared the range of motion within upper cervical segments between patients with cervicogenic headache and asymptomatic subjects were controversial, probably due to methodology limitation. Myofascial release techniques for suboccipital region to increase mobility of upper cervical spine are commonly applied on patients with cervicogenic headache, whether this technique could produced immediately quantitatively increase of cervical mobility is unknown.
Purposes: The purposes of this study were 1) to establish the measurements of the range of motions of upper cervical joints by Zebris system, 2) to establish the measurement of the movement of C0-C1 segment in sagittal plane by measuring the distance change between C0 and C1 by ultrasonography 3) to compare the movements of upper cervical region and the mobility of C0-1 segment between population with cervicogenic headache and asymptomatic ones 4) to measure the change of range and mobility of upper cervical spines after myofascial release that applied on this region in subjects with cervicogenic headache and asymptomatic subjects.
Methods: The study used two methods: 1) ultrasound-based motion analysis system to measure movements (including: nodding, chin-up and rotation to right and left) which were generated from upper cervical segments by manual fixation below C2; 2) ultrasonography was used to record the distance change between occiput and the first cervical vertebrae during craniocervical flexion, which presenting the mobility derived from C0 and C1 on sagittal plane. Asymptomatic subjects were tested twice with a 15-min rest between two sessions in the same day and the intraday test-retest reliability was examined. Range of motion of upper cervical region was compared between 15 patients with cervicogenic headache and 15 asymptomatic ones. Furthermore, the effects of myofascial release applied to suboccipital muscles and C0-C1 joint in 10 patients with cervicogenic headache were compared with 10 min-rest in a crossover study over 2 separate days. Intra-class correlation coefficients (ICC3,3) were calculated to examine the inter-session reliability of the measures. Differences between headache and asymptomatic groups were examined by independent sample t-test or Mann-Whitney U test. Data of crossover study were analyzed using ANOVA with repeated measure. The scores of subjective tightness during carniocervical test before and after two interventions were examined by Wilcoxon signed ranks test.
Results: There were high levels of repeatability of within-day measurements (all ICC3,3 range 0.85 to 0.97) for these two methods. The results revealed that significant difference in the distance change between C0 and C1 (p<0.001). However, no difference was noted between these two groups in ROM of upper cervical segments and total cervical spine. The distance change between C0 and C1 significantly increased after myofascial release (p<0.001), with no significant changes after 10 minutes rest. The scores of subjective tightness during carniocervical test had significant reduced after myofoscial release (p=0.008).
Conclusions: Using ultrasonography to measure the distance change between C0 and C1 could detect the restricted upper cervical range of motion in patients with cervicogenic headache and immediate increases of upper cervical range of motion after myofascial release. This study provided a method to evaluate the movement in C0 and C1 segment other than previous method using radiographic images. It is appropriate for differential diagnosis and assessment of treatment outcome. The results also confirmed that myofascial release could have immediate increase of mobility in C0-C1 segment in individuals with restricted upper cervical range of motion and gave us a reference to improve craniocervical movement pattern in patients with cervicogenic headache.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:26:52Z (GMT). No. of bitstreams: 1
ntu-101-R95428007-1.pdf: 7544324 bytes, checksum: 55329e651e90ce716dd18fe8193a875b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Purposes of study 6
1.3 Terminology 7
1.4 Research Questions 8
1.5 Hypothesis 9
CHACPER 2 LITERATURE REVIEW 10
2.1 Prevalence of Cervicogenic Headache 10
2.1.1 Definition of cervicogenic headache 10
2.1.2 Classification of cervicogenic headache 10
2.1.3 Prevalence of cervicogenic headache 11
2.2 Musculoskeletal Dysfunctions in Patients with Cervicogenic Headache 13
2.2.2 Articular dysfunction 13
2.2.3 Altered range of motion 13
2.2.4 Muscle imbalance in upper cervical region 15
2.3 Anatomy of Rectus Capitis Posterior Minor 18
2.3.1 Anatomy 18
2.3.2 Function of RCPm and its correlation with headache 18
2.4 Methods for Measuring Upper Cervical Motion 19
2.4.1 Radiography 19
2.4.2 Magnetic resonance imaging (MRI) 20
2.4.3 External measurement devices 20
2.4.4 Digital imaging technique 23
2.4.5 Ultrasonography 24
2.5 Myofascial Release for Cervicogenic Headache 27
CHAPTER 3 METHODS 29
3.1 Reliability of Measurements of Range of Motions in Upper Cervical Joints 29
3.1.1 Participants 29
3.1.2 Study Design 29
3.1.3 Experimental Instruments 29
3.1.4 Procedure 30
3.1.5 Data Analysis 31
3.2 Reliability of the Measurement of Movement of C0-C1 Segment 31
3.2.1 Participants 31
3.2.2 Study Design 31
3.2.3 Experimental Instruments 32
3.2.4 Procedure 32
3.2.5 Data Analysis 33
3.3 Difference between Patients with Cervicogenic Headache and Asymptomatic Subjects in the Movement Measurements of Total Cervical Spine, Upper Cervical Spine and Movement of C0-C1 Segment 34
3.3.1 Participants 34
3.3.2 Study Design 35
3.3.3 Variables 35
3.3.4 Experimental instruments and questionnaires 35
3.3.5 Procedures 37
3.3.6 Data Analysis 40
3.4 Movements of Upper Cervical Joints in Patients with Cervicogenic Headache after Myofascial Release 40
3.4.1 Participants 41
3.4.2 Study Design 41
3.4.3 Variables 41
3.4.4 Experimental instruments and questionnaires 42
3.4.5 Procedure 42
3.4.6 Data Analysis 43
CHACPTER 4 RESULTS 45
4.1 Reliability of Measurements of Range of Motions in Upper Cervical Joints 45
4.1.1 Participants 45
4.1.2 Range of motion in upper cervical region 45
4.1.3 Reliability for the range of motion in upper cervical region 45
4.2 Reliability of the Measurement of Movement of C0-C1 Segment 45
4.2.1 Participants 46
4.2.2 Movement of C0-C1 segment 46
4.2.3 Reliability for movement of C0-C1 segment 46
4.3 Difference between Patients with Cervicogenic Headache and Asymptomatic Subjects in the Movement Measurements of Total Cervical Spine, Upper Cervical Spine and C0-C1 Segment 46
4.3.1 Participants 46
4.3.2 The relationship between distance change between C0 and C1 and the range of motion for upper cervical flexion 47
4.3.3 ROM in total cervical spine 47
4.3.4 ROM in upper cervical spine 48
4.3.5 Mobility of C0-C1 segment during craniocervical flexion 49
4.4 Movements of Upper Cervical Joints in Patients with Cervicogenic Headache after Myofascial Release 49
4.4.1 Participants 49
4.4.2 ROM in upper cervical spine 50
4.4.3 Movement of C0-C1 segment 50
4.4.4 Subjective tightness 51
CHACPER 5 DISCUSSIONS 52
5.1 Reliability of Measurements of Range of Motions in Upper Cervical Joints 52
5.1.1 Comparison with other methods 52
5.1.2 Limitation of study 54
5.1.3 Further study 54
5.1.4 Summary 55
5.2 Reliability of the Measurement of Movement of C0-C1 Segment 55
5.2.1 Comparison with other methods 55
5.2.2 Limitation of the study 57
5.2.3 Further study 57
5.2.4 Summary 58
5.3 Difference between Patients with Cervicogenic Headache and Asymptomatic Subjects in the Movement Measurements of Total Cervical Spine, Upper Cervical Spine and C0-C1 Segment 58
5.3.1 Comparison between using motion analysis system and real-time ultrasound to measure the movement in upper cervical segments 58
5.3.2 Comparison with other studies 59
5.3.3 Limitation of the study 63
5.3.4 Further study 63
5.3.5 Summary 63
5.4 Movements of Upper Cervical Joints in Patients with Cervicogenic Headache after Myofascial Release 63
5.4.1 Participants 64
5.4.2 ROM after manual release 64
5.4.3 Movement of C0-C1 segment 65
5.4.4 Subjective tightness 66
5.4.5 Limitation of study 68
5.4.6 Further study 69
5.4.7 Summary 70
CHACPTER 6 CONCLUSION 72
REFERENCES 73
dc.language.isoen
dc.title頸因性頭痛患者於筋膜鬆動術前後之上頸椎活動度量測zh_TW
dc.titleMeasurement of Movements of Upper Cervical Joints in Patients with Cervicogenic Headache after Myofascial Releaseen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee柴惠敏,朱美滿
dc.subject.keyword頸部活動度,超音波,頸椎,頸因性頭痛,筋膜鬆動術,zh_TW
dc.subject.keywordCervical mobility,Ultrasonography,Cervical spine,Cervicogenic headache,Myofascial release,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2012-02-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
7.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved