Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卿建業(Jian-Ye Ching)
dc.contributor.authorYo-Wei Changen
dc.contributor.author張祐維zh_TW
dc.date.accessioned2021-06-17T00:26:32Z-
dc.date.available2014-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-16
dc.identifier.citation1. Been, K., Crooks, J.H.A., and Rothenburg, L. (1988). “A Critical Appraisal of CPT Calibration Chamber Tests”, Proceedings of the 1st International Symposium on Penetration Testing, ISOPT-1, Orlando, Florida, pp.651-659.
2. Belheine, N., Plassiard, J. P., Donze, F. V., and Darve, F. (2009). “Numerical Simul- ation of Drained Triaxial Test using 3D Discrete Element Modeling”, Computers and Geotechnics, Vol. 36, No. 1-2, pp.320-331.
3. Bolton, M. D. (1986). “The Strength and Dilatancy of Sands”, Géotechnique, Vol. 36, No. 1, pp.65-78.
4. Butlanska, J., Arroyo, M., and Gens, A. (2010). “Virtual Calibration Chamber CPT on Ticino Sand”, 2nd International Symposium on Cone Penetration Testing, May 9-11, California, USA.
5. Christoffersen, J., Mehrabadi, M.M., and Nemat-Nasser, S. (1987). “A Mcromech- anical Description of Granular Material Behavior”. Journal of Applied Mechanics, Vol. 48, pp.339-344.
6. Cho, N., Martin, C. D., and Sego, D. C. (2007). “A Clumped Particle Model for Rock”, International Journal of Rock Mechanics & Mining Sciences, Vol. 44, No. 7, pp.997-1010.
7. Cundall, P.A., and Strack, O.D., (1979). “A Discrete Numerical Model for Granular Assemblies”, Geotechnique, Vol. 29, pp.47-65.
8. Hsu, H. H., and Huang, A. B., (1998). “Development of an Axisymmetric Field Si- mulator for Cone Penetration Tests in Sand”, ASTM Geotechnical Testing Journal,Vol. 21, No. 4, pp.348-355.
9. Huang, A. B., and Hsu, H. H. (2005). “Cone Penetration Tests under Simulated Fie- ld Conditions”, Géotechnique, Vol. 55, No. 5, pp.345-354.
10. Huang, A.B., and Ma, M.Y., (1994). “An Analytical Study of Cone Penetration Tests in Granular Material”, Canadian Geotechnical Journal, Vol. 31, No. 1, 91-103.
11. Itasca Consulting Group Inc., (2004). PFC3D (Particle Flow Code in 3 Dimensions), Minneapolis, MN: ICG.
12. Kulhawy, F. H., and Mayne, P. W. (1990). “Manual on Estimating Soil Properties for Foundation Design”, EPRI report.
13. Phoon, K. K. (1995). “Reliability-Based Design of Foundations for Transmission Line Structure. Ph.D. Dissertation, Cornell University, Ithace, N.Y.
14. Salgado, R., Mitchell, J. K., and Jamiolkowski, M. (1998). “Calibration Chamber Size Effects on Penetration Resistance in Sands”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 9, pp.878-888.
15. Ting, J.M., Corkum, B.T., Kauffman, C.R., and Creco, C.(1987). “Discrete Numer- ical Modeling of Soil: Validation and Application”, Publication 87-03, Dept. of Civil Engineering, Univ. of Toronto, Toronto, Canada.
16. Vanmarcke, E. H. (1977). “Probabilistic Modeling of Soil Profiles”, Journal of Geo- technical Engineering Division, Vol. 103, No. 11, pp.1227-1246.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66231-
dc.description.abstract目前在工程分析及設計上主要使用現地取樣所作的三軸試驗的摩擦角作為設計的依據,而作三軸試驗相當費時及昂貴,相對於三軸試驗,圓錐貫入試驗則具有省時、方便、經濟的優點。因此此研究的目的在於找出圓錐貫入試驗所得到的錐尖阻抗值及三軸試驗的摩擦角之間的空間變異性之關連,若能明確的得到兩者之間的關係,則可藉由錐尖阻抗值的空間變異性推求工程設計上所需要的摩擦角之空間變異性,未來應用於現地上,則可為工程界節省下許多資源。
定義空間變異性中重要參數為變異數及相關聯性長度(SOF),因此我們必須明確清楚參數各別在錐尖阻抗值及摩擦角之間的關聯性,例如:錐尖阻抗值的關連性長度與摩擦角的關連性長度,兩者間的關連性。如此才能由圓錐貫入試驗得到的錐尖阻抗值空間變異性推求三軸試驗得到的摩擦角的空間變異性。
由於圓錐貫入試驗屬於變形較大的試驗,因此連續體分析較不適用於此研究,因此採用分離元素法軟體作為主要的研究工具,本研究所使用的分離元素法軟體PFC3D,利用數值方法能產生句空間變異性的試體及重複試驗相同試體的特性來得到數據探討本研究想探討的問題。
分析結果顯示,若假設圓錐貫入實驗所得到之錐尖阻抗值是不發生強度的平均效應,而由於三軸試體相對於圓錐貫入器所接觸的試體來的大,故三軸試驗時,試體的強度將發生平均效應,而平均效應的型式為破壞面上的3~4點平均效應,而非面平均效應及體平均效應。
zh_TW
dc.description.abstractIn engineering analysis and design, the value of soil friction angles used were mainly obtained from triaxial test. However, considering the cost and time-consuming of triaxial tests, cone penetration tests have its advantage of cost and time-saving, and convenience. Hence, this research focuses on the relationships between spatial variability of friction angles acquired from triaxial tests and cone penetration tests. The clarification of this relationships helps to make it possible to seek the spatial variability of design friction angles through the spatial variability of cone resistance.
Variance and scale of fluctuation (SOF) are two important parameters to define spatial variability. Thus, it is crucial to understand the relationships, for example, the relationships between SOF of cone resistance and SOF of friction angle, in order to obtain one from another.
Since the deformation during cone penetration tests is relatively high, continuum analysis may not be a suitable method, a distinct element method PFC3D were taken throughout this research. Specimen with spatial variability were created and repeated to generate sufficient data.
The results show that, it is reasonable to assume that the cone resistance does not induce average effect of soil strength. Yet average effect would occur during triaxial tests for the contact area is larger with respect to cone penetration tests. The soil strength of a triaxial test is the average of 3 to 4 points on failure surface, rather than surface average or volume average
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:26:32Z (GMT). No. of bitstreams: 1
ntu-101-R98521124-1.pdf: 3872760 bytes, checksum: bddf447baa6d761fe0d255c643293a41 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員審定書I
中文摘要II
英文摘要III
目錄IV
圖目錄VII
表目錄XI
第一章 前言1
1.1 研究動機1
1.2 研究方法2
第二章 分析軟體4
2.1 軟體介紹4
2.1.1 離散元素法之起源4
2.1.2 離散元素法之基本假設4
2.2 離散元素法之運算5
2.2.1力-位移關係5
2.2.2牛頓第二運動定律7
2.2.3 接觸組成模式9
第三章 文獻回顧17
3.1 離散元素法模擬三軸試驗17
3.2 離散元素法模擬圓錐貫入試驗19
3.2.1錐尖貫入值之計算22
3.3 PFC之clump功能 23
3.4 土壤之空間變異性24
3.4.1 土壤空間變異性造成原因25
3.4.2 土壤空間變異性之定義及各項重要參數26
3.4.3土壤空間變異性之量化28
3.4.4土壤空間變異性之平均效應31
第四章 利用分離元素法模擬各項試驗33
4.1 人造試體粒徑選取及參數設定33
4.1.1粒徑選取33
4.1.2參數設定33
4.1.3產生人造試體35
4.2 單向度壓縮試驗模擬36
4.2.1單向度壓縮試驗模型建立36
4.2.2試體邊界條件37
4.2.3模擬步驟38
4.2.4單向度壓縮試驗模擬結果 59
4.3三軸試驗模擬41
4.3.1三軸試驗模型建立42
4.3.2試體邊界條件42
4.3.3模擬步驟43
4.3.4三軸試驗模擬結果59
4.4 Calibration Chamber Test模擬56
4.4.1 Calibration Chamber Test模型建立58
4.4.2試體邊界條件59
4.4.3模擬步驟59
4.4.4 Calibration Chamber Test模擬結果64
4.5模擬結果驗證68
第五章 摩擦角與錐尖阻抗值之空間關聯性探討75
5.1摩擦角之空間變異性75
5.2錐尖阻抗值之空間變異性77
5.3探討摩擦角與錐尖阻抗值之關聯91
5.3.1標準偏差的平均效應92
5.3.2關連性長度的平均效應96
第六章 結論與建議102
6.1結論102
6.2建議及未來方向102
參考文獻104
dc.language.isozh-TW
dc.subject平均效應zh_TW
dc.subject空間變異性zh_TW
dc.subject錐尖阻抗值zh_TW
dc.subject摩擦角zh_TW
dc.subject空間變異性zh_TW
dc.subjectDEMzh_TW
dc.subjectPFC3Dzh_TW
dc.subject平均效應zh_TW
dc.subject錐尖阻抗值zh_TW
dc.subjectPFC3Dzh_TW
dc.subject摩擦角zh_TW
dc.subjectDEMzh_TW
dc.subjectfriction angleen
dc.subjectspatial variabilitiesen
dc.subjectDEMen
dc.subjectPFC3Den
dc.subjectcone resistanceen
dc.subjectfriction angleen
dc.subjectspatial variabilitiesen
dc.subjectDEMen
dc.subjectPFC3Den
dc.subjectcone resistanceen
dc.title以分離元素法探討摩擦角及錐尖阻抗之空間關連性zh_TW
dc.titleSimulating Spatial Variabilities of Friction Angle and Cone Resistance by Using Distinct Element Methoden
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃安斌(An-Bin Huang),劉家男(Chia-Nan Liu,)
dc.subject.keyword空間變異性,DEM,PFC3D,平均效應,錐尖阻抗值,摩擦角,zh_TW
dc.subject.keywordspatial variabilities,DEM,PFC3D,cone resistance,friction angle,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2012-02-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved