請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66191
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
dc.contributor.author | Po-Sheng Wang | en |
dc.contributor.author | 王博昇 | zh_TW |
dc.date.accessioned | 2021-06-17T00:25:02Z | - |
dc.date.available | 2014-06-27 | |
dc.date.copyright | 2012-06-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-04-05 | |
dc.identifier.citation | [1] M. Pope, P. Magnante, and H. P. Kallmann, “ELECTROLUMINESCENCE IN ORGANIC CRYSTALS,” Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-&, 1963.
[2] W. Helfrich, and W. G. Schneider, “Recombination Radiation in Anthracene Crystals,” Physical Review Letters, vol. 14, no. 7, pp. 229-231, 1965. [3] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987. [4] A. Yamamori, C. Adachi, T. Koyama et al., “Doped organic light emitting diodes having a 650-nm-thick hole transport layer,” Applied Physics Letters, vol. 72, no. 17, pp. 2147-2149, Apr, 1998. [5] R. Agrawal, P. Kumar, S. Ghosh et al., “Thickness dependence of space charge limited current and injection limited current in organic molecular semiconductors,” Applied Physics Letters, vol. 93, no. 7, Aug, 2008. [6] D. Ammermann, A. Bohler, S. Dirr et al., “Multilayer organic light emitting diodes for flat panel displays,” Aeu-Archiv Fur Elektronik Und Ubertragungstechnik-International Journal of Electronics and Communications, vol. 50, no. 5, pp. 327-333, Sep, 1996. [7] Y. H. Tak, K. B. Kim, H. G. Park et al., “Criteria for ITO (indium-tin-oxide) an organic light thin film as the bottom electrode of emitting diode,” Thin Solid Films, vol. 411, no. 1, pp. 12-16, May, 2002. [8] H. J. Peng, X. L. Zhu, J. X. Sun et al., “Efficient organic light-emitting diode using semitransparent silver as anode,” Applied Physics Letters, vol. 87, no. 17, Oct, 2005. [9] T. Dobbertin, M. Kroeger, D. Heithecker et al., “Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes,” Applied Physics Letters, vol. 82, no. 2, pp. 284-286, Jan 13, 2003. [10] C. W. Chen, C. L. Lin, and C. C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Applied Physics Letters, vol. 85, no. 13, pp. 2469-2471, Sep, 2004. [11] C. C. Wu, C. W. Chen, C. L. Lin et al., “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” Journal of Display Technology, vol. 1, no. 2, pp. 248-266, Dec, 2005. [12] S. Hofmann, M. Thomschke, B. Lussem et al., “Top-emitting organic light-emitting diodes,” Optics Express, vol. 19, no. 23, pp. A1250-A1264, Nov, 2011. [13] W. Y. Ji, J. L. Zhao, Z. C. Sun et al., “High-color-rendering flexible top-emitting warm-white organic light emitting diode with a transparent multilayer cathode,” Organic Electronics, vol. 12, no. 7, pp. 1137-1141, Jul, 2011. [14] B. Consulting, I. Navigant Consulting, R. Advisors et al., 'Roundtable Discussions of the Solid-State Lighting R&D Priorities,' 2012]. [15] N. G. L. I. Alliance, 'LED Luminaire Lifetime : Recommendations for Testing and Reporting,' U. S. D. o. Energy, ed., 2011. [16] B. Consulting, I. Navigant Consulting, I. Radcliffe Advisors et al., 'Solid -State Lighting Research and Development: Manufactruing Roadmap,' 2011]. [17] H. Ishii, K. Sugiyama, E. Ito et al., “Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces,” Advanced Materials, vol. 11, no. 8, pp. 605-+, Jun, 1999. [18] G. Ashkenasy, D. Cahen, R. Cohen et al., “Molecular engineering of semiconductor surfaces and devices,” Accounts of Chemical Research, vol. 35, no. 2, pp. 121-128, Feb, 2002. [19] D. Cahen, and A. Kahn, “Electron energetics at surfaces and interfaces: Concepts and experiments,” Advanced Materials, vol. 15, no. 4, pp. 271-277, Feb, 2003. [20] S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces,” Advanced Materials, vol. 21, no. 14-15, pp. 1450-1472, Apr, 2009. [21] M. G. Helander, Z. B. Wang, J. Qiu et al., “Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility,” Science, vol. 332, no. 6032, pp. 944-947, May, 2011. [22] A. Kahn, N. Koch, and W. Y. Gao, “Electronic structure and electrical properties of interfaces between metals and pi-conjugated molecular films,” Journal of Polymer Science Part B-Polymer Physics, vol. 41, no. 21, pp. 2529-2548, Nov, 2003. [23] Y. Yamamoto, and K. Yamamoto, “Precise XPS depth profile of soda-lime-silica float glass using C(60) ion beam,” Optical Materials, vol. 33, no. 12, pp. 1927-1930, Oct, 2011. [24] K. Y. Kim, H. C. Choi, C. Y. You et al., “Exchange bias and compositional depth profiles of annealed NiFe/FeMn/CoFe trilayers,” Journal of Applied Physics, vol. 105, no. 7, Apr, 2009. [25] H. Park, D. S. Shin, H. S. Yu et al., “Electron mobility in tris(8-hydroxyquinoline)aluminum (Alq(3)) films by transient electroluminescence from single layer organic light emitting diodes,” Applied Physics Letters, vol. 90, no. 20, May, 2007. [26] H. H. Fong, and S. K. So, “Hole transporting properties of tris(8-hydroxyquinoline) aluminum (Alq(3)),” Journal of Applied Physics, vol. 100, no. 9, Nov, 2006. [27] M. Knupfer, H. Peisert, and T. Schwieger, “Band-gap and correlation effects in the organic semiconductor Alq_{3},” Physical Review B, vol. 65, no. 3, pp. 033204, 2001. [28] I. W. Wu, Y. H. Chen, P. S. Wang et al., “Correlation of energy band alignment and turn-on voltage in organic light emitting diodes,” Applied Physics Letters, vol. 96, no. 1, Jan, 2010. [29] T. Wakimoto, Y. Fukuda, K. Nagayama et al., “Organic EL cells using alkaline metal compounds as electron injection materials,” Ieee Transactions on Electron Devices, vol. 44, no. 8, pp. 1245-1248, Aug, 1997. [30] H. W. Choi, S. Y. Kim, W. K. Kim et al., “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Applied Physics Letters, vol. 87, no. 8, Aug, 2005. [31] J. Lee, Y. Park, D. Y. Kim et al., “High efficiency organic light-emitting devices with Al/NaF cathode,” Applied Physics Letters, vol. 82, no. 2, pp. 173-175, Jan, 2003. [32] D. Grozea, A. Turak, X. D. Feng et al., “Chemical structure of Al/LiF/Alq interfaces in organic light-emitting diodes,” Applied Physics Letters, vol. 81, no. 17, pp. 3173-3175, Oct, 2002. [33] T. Y. Chu, Y. H. Lee, and O. K. Song, “Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes,” Applied Physics Letters, vol. 91, no. 22, Nov, 2007. [34] Y. Zou, Z. B. Deng, D. H. Xu et al., “Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer,” Journal of Luminescence, vol. 132, no. 2, pp. 414-417, Feb, 2012. [35] S. Y. Kim, K. Hong, K. Kim et al., “Increase of quantum efficiency in organic light emitting diodes with Mg-Al alloy cathode and RhO2-coated ITO anode,” Electronic Materials Letters, vol. 4, no. 2, pp. 63-66, Jun, 2008. [36] M. T. Bernius, M. Inbasekaran, J. O'Brien et al., “Progress with light-emitting polymers,” Advanced Materials, vol. 12, no. 23, pp. 1737-1750, Dec, 2000. [37] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Applied Physics Letters, vol. 70, no. 2, pp. 152-154, Jan, 1997. [38] T. Y. Chu, J. F. Chen, S. Y. Chen et al., “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Applied Physics Letters, vol. 89, no. 5, Jul, 2006. [39] Q. Wang, Z. Q. Deng, and D. G. Ma, “Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer,” Optics Express, vol. 17, no. 20, pp. 17269-17278, Sep, 2009. [40] K. Hong, K. Kim, and J. L. Lee, “Enhancement of electrical property by oxygen doping to copper phthalocyanine in inverted top emitting organic light emitting diodes,” Applied Physics Letters, vol. 95, no. 21, Nov, 2009. [41] R. Schlaf, B. A. Parkinson, P. A. Lee et al., “Photoemission spectroscopy of LiF coated Al and Pt electrodes,” Journal of Applied Physics, vol. 84, no. 12, pp. 6729-6736, Dec, 1998. [42] W. Ries, H. Riel, P. F. Seidler et al., “Organic–inorganic multilayer structures: a novel route to highly efficient organic light-emitting diodes,” Synthetic Metals, vol. 99, no. 3, pp. 213-218, 1999. [43] M. G. Mason, C. W. Tang, L. S. Hung et al., “Interfacial chemistry of Alq(3) and LiF with reactive metals,” Journal of Applied Physics, vol. 89, no. 5, pp. 2756-2765, Mar, 2001. [44] H. Heil, J. Steiger, S. Karg et al., “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” Journal of Applied Physics, vol. 89, no. 1, pp. 420-424, Jan, 2001. [45] C. I. Wu, G. R. Lee, and T. W. Pi, “Energy structures and chemical reactions at the Al/LiF/Alq(3) interfaces studied by synchrotron-radiation photoemission spectroscopy,” Applied Physics Letters, vol. 87, no. 21, Nov, 2005. [46] K. H. Kim, S. Y. Huh, S. M. Seo et al., “Inverted top-emitting organic light-emitting diodes by whole device transfer,” Organic Electronics, vol. 9, no. 6, pp. 1118-1121, Dec, 2008. [47] Z. T. Xie, W. H. Zhang, B. F. Ding et al., “Interfacial reactions at Al/LiF and LiF/Al,” Applied Physics Letters, vol. 94, no. 6, Feb, 2009. [48] S. K. M. Jonsson, W. R. Salaneck, and M. Fahlman, “Photoemission of Alq(3) and C(60) films on Al and LIF/Al substrates,” Journal of Applied Physics, vol. 98, no. 1, Jul, 2005. [49] L. S. Hung, R. Q. Zhang, P. He et al., “Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes,” Journal of Physics D: Applied Physics, vol. 35, no. 2, pp. 103, 2002. [50] S. D. Wang, M. K. Fung, S. L. Lai et al., “Experimental study of a chemical reaction between LiF and Al,” Journal of Applied Physics, vol. 94, no. 1, pp. 169-173, Jul, 2003. [51] Y. J. L. T. Y. Cho, C. J. Yang, T. H. Ke, and C. C. Wu,, “Investigations of molybdenum oxide as the anode-insensitive hole injection layer,” Proceedings of the International Display Manufacturing Conference, pp. 1297, 2006. [52] C. W. Chen, Y. J. Lu, C. C. Wu et al., “Effective connecting architecture for tandem organic light-emitting devices,” Applied Physics Letters, vol. 87, no. 24, Dec, 2005. [53] T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Applied Physics Letters, vol. 91, no. 25, Dec, 2007. [54] J. H. Hou, J. Wu, Z. Y. Xie et al., “Efficient inverted top-emitting organic light-emitting diodes using ultrathin MoO(3)/C(60) bilayer structure to enhance hole injection,” Applied Physics Letters, vol. 95, no. 20, Nov, 2009. [55] C. Shen, A. Kahn, and J. Schwartz, “Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy quinoline) aluminum,” Journal of Applied Physics, vol. 89, no. 1, pp. 449-459, Jan, 2001. [56] H. Kanno, N. C. Giebink, Y. R. Sun et al., “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Applied Physics Letters, vol. 89, no. 2, Jul, 2006. [57] H. You, Y. F. Dai, Z. Q. Zhang et al., “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” Journal of Applied Physics, vol. 101, no. 2, Jan, 2007. [58] T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” Journal of Applied Physics, vol. 104, no. 5, Sep, 2008. [59] T. F. Guo, T. C. Wen, Y. S. Huang et al., “White-emissive tandem-type hybrid organic/polymer diodes with (0.33,0.33) chromaticity coordinates,” Optics Express, vol. 17, no. 23, pp. 21205-21215, Nov, 2009. [60] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang et al., “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO(3) hole selective layer,” Applied Physics Letters, vol. 93, no. 22, Dec, 2008. [61] D. W. Zhao, P. Liu, X. W. Sun et al., “An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO(3) hole-transporting layer,” Applied Physics Letters, vol. 95, no. 15, Oct, 2009. [62] H. Schmidt, H. Flugge, T. Winkler et al., “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Applied Physics Letters, vol. 94, no. 24, Jun, 2009. [63] D. Y. Kim, G. Sarasqueta, and F. So, “SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1452-1456, 2009. [64] P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Organic Electronics, vol. 11, no. 8, pp. 1419-1422, Aug, 2010. [65] D. Kumaki, T. Umeda, and S. Tokito, “Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a MoO(x) carrier injection layer,” Applied Physics Letters, vol. 92, no. 1, Jan, 2008. [66] C. W. Chu, S. H. Li, C. W. Chen et al., “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Applied Physics Letters, vol. 87, no. 19, Nov, 2005. [67] D. Kumaki, T. Umeda, T. Suzuki et al., “High-mobility bottom-contact thin-film transistor based on anthracene oligomer,” Organic Electronics, vol. 9, no. 5, pp. 921-924, Oct, 2008. [68] M. A. K. L. Dissanayake, and L. L. Chase, “Optical properties of CrO_{2}, MoO_{2}, and WO_{2} in the range 0.2-6 eV,” Physical Review B, vol. 18, no. 12, pp. 6872-6879, 1978. [69] F. Werfel, and E. Minni, “PHOTOEMISSION-STUDY OF THE ELECTRONIC-STRUCTURE OF MO AND MO OXIDES,” Journal of Physics C-Solid State Physics, vol. 16, no. 31, pp. 6091-6100, 1983. [70] F. X. Wang, X. F. Qiao, T. Xiong et al., “The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes,” Organic Electronics, vol. 9, no. 6, pp. 985-993, Dec, 2008. [71] M. Kroger, S. Hamwi, J. Meyer et al., “Role of the deep-lying electronic states of MoO(3) in the enhancement of hole-injection in organic thin films,” Applied Physics Letters, vol. 95, no. 12, Sep, 2009. [72] H. Lee, S. W. Cho, K. Han et al., “The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N '-bis(1-naphthyl)-N,N '-diphenyl-1,1 '-biphenyl-4,4 '-diamine interfaces,” Applied Physics Letters, vol. 93, no. 4, Jul, 2008. [73] C. I. Wu, C. T. Lin, G. R. Lee et al., “Electronic and chemical properties of molybdenum oxide doped hole injection layers in organic light emitting diodes,” Journal of Applied Physics, vol. 105, no. 3, Feb, 2009. [74] W. J. Shin, J. Y. Lee, J. C. Kim et al., “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Organic Electronics, vol. 9, no. 3, pp. 333-338, Jun, 2008. [75] V. Bhosle, A. Tiwari, and J. Narayan, “Epitaxial growth and properties of MoOx(2 < x < 2.75) films,” Journal of Applied Physics, vol. 97, no. 8, Apr, 2005. [76] T. Schroeder, J. Zegenhagen, N. Magg et al., “Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM,” Surface Science, vol. 552, no. 1-3, pp. 85-97, Mar, 2004. [77] P. A. Spevack, and N. S. McIntyre, “A RAMAN AND XPS INVESTIGATION OF SUPPORTED MOLYBDENUM OXIDE THIN-FILMS .1. CALCINATION AND REDUCTION STUDIES,” Journal of Physical Chemistry, vol. 97, no. 42, pp. 11020-11030, Oct, 1993. [78] C. Julien, A. Khelfa, O. M. Hussain et al., “SYNTHESIS AND CHARACTERIZATION OF FLASH-EVAPORATED MOO3 THIN-FILMS,” Journal of Crystal Growth, vol. 156, no. 3, pp. 235-244, Nov, 1995. [79] J. G. Choi, and L. T. Thompson, “XPS study of as-prepared and reduced molybdenum oxides,” Applied Surface Science, vol. 93, no. 2, pp. 143-149, Feb, 1996. [80] O. Y. Khyzhun, T. Strunskus, and Y. M. Solonin, “XES, XPS and NEXAFS studies of the electronic structure of cubic MoO1.9 and H1.63MoO3 thick films,” Journal of Alloys and Compounds, vol. 366, no. 1-2, pp. 54-60, Mar, 2004. [81] C. A. Rozzi, F. Manghi, and F. Parmigiani, “Ab initio Fermi surface and conduction-band calculations in oxygen-reduced MoO3,” Physical Review B, vol. 68, no. 7, Aug, 2003. [82] R. Tokarz-Sobieraj, K. Hermann, M. Witko et al., “Properties of oxygen sites at the MoO3(010) surface: density functional theory cluster studies and photoemission experiments,” Surface Science, vol. 489, no. 1-3, pp. 107-125, Aug, 2001. [83] T. Matsushima, G. H. Jin, Y. Kanai et al., “Interfacial charge transfer and charge generation in organic electronic devices,” Organic Electronics, vol. 12, no. 3, pp. 520-528, Mar, 2011. [84] M. Ben Khalifa, D. Vaufrey, and J. Tardy, “Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs,” Organic Electronics, vol. 5, no. 4, pp. 187-198, Jun, 2004. [85] I. W. Wu, P. S. Wang, W. H. Tseng et al., “Correlations of impedance-voltage characteristics and carrier mobility in organic light emitting diodes,” Organic Electronics, vol. 13, no. 1, pp. 13-17, Jan, 2012. [86] M. Song, J. S. Park, C. H. Kim et al., “High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes,” Organic Electronics, vol. 10, no. 7, pp. 1412-1415, Nov, 2009. [87] P. K. Nayak, N. Agarwal, N. Periasamy et al., “Pure exciplex electroluminescence in blended film of small organic molecules,” Synthetic Metals, vol. 160, no. 7-8, pp. 722-727, Apr, 2010. [88] J. H. Lee, P. S. Wang, H. D. Park et al., “A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection,” Organic Electronics, vol. 12, no. 11, pp. 1763-1767, Nov, 2011. [89] N. Chopra, J. S. Swensen, E. Polikarpov et al., “High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture,” Applied Physics Letters, vol. 97, no. 3, Jul, 2010. [90] M. G. Shin, K. Thangaraju, S. O. Kim et al., “A new N-fluorenyl carbazole host material: Synthesis, physical properties and applications for highly efficient phosphorescent organic light emitting diodes,” Organic Electronics, vol. 12, no. 5, pp. 785-793, May, 2011. [91] M. Hashimoto, S. Igawa, M. Yashima et al., “Highly Efficient Green Organic Light-Emitting Diodes Containing Luminescent Three-Coordinate Copper(I) Complexes,” Journal of the American Chemical Society, vol. 133, no. 27, pp. 10348-10351, Jul, 2011. [92] L. X. Xiao, Z. J. Chen, B. Qu et al., “Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices,” Advanced Materials, vol. 23, no. 8, pp. 926-952, Feb, 2011. [93] Y. Zheng, S. H. Eom, N. Chopra et al., “Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement,” Applied Physics Letters, vol. 92, no. 22, Jun, 2008. [94] K. Kanai, K. Koizumi, S. Ouchi et al., “Electronic structure of anode interface with molybdenum oxide buffer layer,” Organic Electronics, vol. 11, no. 2, pp. 188-194, Feb, 2010. [95] E. Lalik, W. I. F. David, P. Barnes et al., “Mechanisms of reduction of MoO(3) to MoO(2) reconciled?,” Journal of Physical Chemistry B, vol. 105, no. 38, pp. 9153-9156, Sep, 2001. [96] R. Tokarz-Sobieraj, R. Grybos, M. Witko et al., “Oxygen sites at molybdena and vanadia surfaces: Energetics of the re-oxidation process,” Collection of Czechoslovak Chemical Communications, vol. 69, no. 1, pp. 121 - 140, 2004. [97] E. Lalik, “Kinetic analysis of reduction of MoO(3) to MoO(2),” Catalysis Today, vol. 169, no. 1, pp. 85-92, Jul, 2011. [98] M. Kroger, S. Hamwi, J. Meyer et al., “P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide,” Organic Electronics, vol. 10, no. 5, pp. 932-938, Aug, 2009. [99] P. S. Wang, I. W. Wu, W. H. Tseng et al., “Enhancement of current injection in organic light emitting diodes with sputter treated molybdenum oxides as hole injection layers,” Applied Physics Letters, vol. 98, no. 17, Apr, 2011. [100] C. T. Lin, C. H. Yeh, M. H. Chen et al., “Influences of evaporation temperature on electronic structures and electrical properties of molybdenum oxide in organic light emitting devices,” Journal of Applied Physics, vol. 107, no. 5, Mar, 2010. [101] J. H. Lee, H. M. Kim, K. B. Kim et al., “Origin of charge generation efficiency of metal oxide p-dopants in organic semiconductors,” Organic Electronics, vol. 12, no. 6, pp. 950-954, Jun, 2011. [102] S. Hamwi, J. Meyer, M. Kroger et al., “The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes,” Advanced Functional Materials, vol. 20, no. 11, pp. 1762-1766, Jun, 2010. [103] M. J. Son, S. Kim, S. Kwon et al., “Interface electronic structures of organic light-emitting diodes with WO(3) interlayer: A study by photoelectron spectroscopy,” Organic Electronics, vol. 10, no. 4, pp. 637-642, Jul, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66191 | - |
dc.description.abstract | 本論文提出並實現三種有效增進有機發光二極體載子注入效率的方法,經由特殊處理一些常見於有機發光二極體的材料,元件電流可被有效提升。此研究同時利用X光與紫外光電子能譜分析載子注入效率增進的原因。利用直接對倒置型有機發光二極體元件進行熱退火的方式,可以催化發生於三(8-羫基喹啉)鋁 (Alq3)、氟化鋰 (LiF)以及鋁電極之間的化學反應,進而提升倒置型陰極結構的電子注入效率。根據光電子能譜顯示,倒置型三(8-羫基喹啉)鋁之陰極結構經過熱退火處理之後,其價帶電子組態與氮原子之氧化態會產生變化,而此改變來自於倒置陰極產生的化學反應。此外本論文提出兩種處理氧化鉬(MoO3)電洞注入層的方法,可以提升電洞經由銦錫氧化物(ITO)陽極注入電洞傳輸層的效率。利用氬離子電漿剝蝕已蒸鍍於基板上的氧化鉬薄膜表面,或是對其進行熱退火處理,都可以有效提升氧化鉬薄膜的電洞注入效果。在離子剝蝕與熱退火處理氧化鉬表面的同時,利用紫外光電子能譜觀察,發現在氧化鉬的能隙中產生大量的能隙能階,這些能隙能階可提供電洞連續的傳輸途徑,使電洞注入效率更好。X光電子能譜的分析則顯示氧化鉬薄膜經過離子剝蝕處理之後,薄膜中的鉬與氧原子比例會由於較多的氧原子被移除而改變,鉬原子也因此具有較低的氧化態。此外發現在熱退火氧化鉬時,類結構分解(topotactic decomposition)會使氧化鉬薄膜釋放所含之部分氧原子,並促使鉬原子產生二聚作用(dimerization),同時提供大量的能隙能階。經實驗驗證此二法處理過之氧化鉬電洞注入層可用於搭配無法與氧化鉬直接產生化學反應之電洞傳輸材料,如4,4'-環己基二[N,N-二(4-甲基苯基)]苯胺(TAPC)以及N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-聯苯-4,4'-二胺 (TPD),元件採用處理過的氧化鉬薄膜做為電洞注入層可提供較佳的注入電流。 | zh_TW |
dc.description.abstract | Three techniques that enhance the carrier injection efficiency in organic light emitting diodes (OLEDs) are demonstrated in this dissertation. By proper treatments to common OLED materials, the injection current can be effectively improved in devices. The origins of the enhancement in device current and mechanisms regarding these treatments are investigated by ultra-violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) to provide interpretations. The electron injection in inverted OLEDs is improved by activating the chemical reactions between Tris(8-hydroxyquinolato)aluminum (Alq3), lithium fluoride (LiF), and aluminum cathodes via post-process thermal annealing. By annealing the inverted OLEDs under proper temperatures a better electron injection can be achieved. UPS and XPS spectra reveal the evolution of valence band features as well as oxidation states of nitrogen in Alq3 layers, confirming chemical reactions in the inverted Alq3 tri-layers after proper thermal annealing. Two approaches that enhance the hole injection efficiency from indium tin oxide (ITO) anodes to hole transporting layers (HTLs) are provided with the incorporation of molybdenum oxide (MoO3) hole injecting layers (HILs). By either treating the surfaces of as-deposited MoO3 layers with argon ion sputtering or thermal annealing in high vacuum, efficient hole injection is provided by the modified MoO3 layers. Via UPS, formation of huge amounts of gap states is identified inside the band gap of MoO3 during ion sputtering or thermal annealing. Those gap states provide continuous transition paths for holes to hop through, resulting in superior hole injection efficiency from anodes to HTLs. XPS analysis shows the reduction of Mo atoms due to the removal of oxygen atoms after ion sputtering, providing changes in atomic concentration of the treated surfaces. During thermal annealing, topotactic decompositions of MoO3 release the oxygen inside the films and cause dimerization of Mo atoms, which generate gap states in the band gap. By treating the MoO3 layers, those hole transporting materials (HTMs) that cannot react with as-deposited MoO3 can now also achieve improved hole injection. 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD) HTLs are demonstrated to have better hole injection current on the sputtered and annealed MoO3 layers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:25:02Z (GMT). No. of bitstreams: 1 ntu-101-F95941029-1.pdf: 4482537 bytes, checksum: 22f0fa39887de7d0f898542d05c9ed58 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II Contents IV List of Figure VI List of Table IX Chapter 1 Introduction 1 1.1 Organic Light Emitting Devices 1 1.2 Electron Energetics in Surface Analysis 9 Chapter 2 Experiments 13 2.1 Photoelectron Spectroscopy 13 2.1.1 Theory of X-ray and Ultra-violet Photoelectron Spectroscopy 13 2.1.2 System Setup for UPS and XPS 18 2.2 Vacuum System for Device Fabrication and Surface Modification 21 2.2.1 Vacuum Chambers for Device Fabrication 21 2.2.2 Argon Ion Gun 23 Chapter 3 Enhancing Electron Injection via Thermal Annealing to Alq3/LiF/Al Tri-layers. 25 3.1 Cathode Structures and Materials 25 3.2 Enhanced Electron Injection in Annealed Alq3/LiF/Al tri-layers 31 Chapter 4 Enhancing Hole Injection Efficiency of Molybdenum Oxide via Sputter Treatment 40 4.1 Roles and Properties of Molybdenum Oxide in OLEDs 40 4.2 Enhanced Hole Injection in Sputtered MoO3 Layers 45 4.3 Enhanced Compatibility of MoO3 with Other Hole Transporting Materials 59 Chapter 5 Enhancing Hole Injection Efficiency of Molybdenum Oxide via Thermal Annealing 68 5.1 Enhanced Hole Injection in OLEDs with Annealed MoO3 and TAPC HTLs 68 5.2 Investigation on Interfaces between TAPC and Annealed MoO3 by Synchrotron Radiation Photoelectron Spectroscopy 81 Chapter 6 Conclusions and Future Works 89 6.1 Conclusions 89 6.2 Suggestions for Future Research 91 Reference 93 | |
dc.language.iso | en | |
dc.title | 有機發光二極體載子注入增進技術及其界面電子結構研究 | zh_TW |
dc.title | Investigation of Techniques for Enhancement in Carrier Injection and Interfacial Electronic Structures in Organic Light Emitting Devices | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 孟心飛,陳奕君,余沛慈,陳美杏,陳裕宏 | |
dc.subject.keyword | 有機發光二極體,三氧化鉬,氟化鋁,光電子能譜,電子注入,電洞注入,離子蝕刻,熱退火, | zh_TW |
dc.subject.keyword | OLED,MoO3,LiF,UPS,XPS,Hole injection,electron injection,ion sputter,thermal annealing, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-04-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。