Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66186
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊晴光(Ching-Kuang Clive Tzuang)
dc.contributor.authorLi Suen
dc.contributor.author蘇黎zh_TW
dc.date.accessioned2021-06-17T00:24:50Z-
dc.date.available2012-06-27
dc.date.copyright2012-06-27
dc.date.issued2012
dc.date.submitted2012-04-23
dc.identifier.citation[1] I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol. 8, no. 12, pp. 302-303, 1972.
[2] M. Guglielmi, and G. Gatti, “Experimental investigation of dual-mode microstrip ring resonators,” in 20th Europe. Microw. Conf., 1990, pp. 901-906.
[3] U. Karacaoglu, I. D. Robertson, and M. Guglielmi, “A dual-mode microstrip ring resonator filter with active devices fir loss compensation,” in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, June 1993, pp. 189-192.
[4] J. S. Hong, and M. J. Lancaster, “Bandpass characteristics of new dual-mode microstrip square loop resonators,” IEEE Electronics Letters, vol. 31, no. 1, pp. 891-892, 1995.
[5] L. Zhu, and K. Wu, “A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 1938-1948, 1999.
[6] M. Matuso, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1235-1240, 2001.
[7] B. T. Tan, J. J. Yu, S. T. Chew et al., “A miniaturized dual-mode ring bandpass filter with a new perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 343-348, 2005.
[8] W. Kang, W. Hong, and J. Y. Zhou, “Performance improvement and size reduction of microstrip dual-mode bandpass filter,” Electron. Lett., vol. 44, no. 6, pp. 421-422, 2008.
[9] A. Gorur, C. Karpuz, and M. Akpinar, “A reduced-size dual-mode bandpass filter with capacitively open loop arms,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 385-388, 2003.
[10] M. F. Lei, and H. Wang, “Implementation of reduced size dual-mode ring filters in LTCC and MMIC processes at millimeter wave frequencies,” Proc. 36th European Microwave Conference, 2006, pp. 537-540.
[11] S. W. Fok, P. Cheong, K. W. Tam et al., “A novel microstrip square loop dual-mode bandpass filter with simultaneous size reduction and sprious response suppression,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2033-2041, 2006.
[12] A. Gorur, “A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator,” IEEE Microwave and Wireless Component letters, vol. 12, no. 10, pp. 386-388, 2002.
[13] M.-F. Lei, and H. Wang, “An analysis of miniaturized dual-mode bandpass filter using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 861-867, 2005.
[14] H. W. Hsu, C. H. Lai, and T. G. Ma, “A miniaturized dual-mode ring bandpass filter,” IEEE Microwave and Wireless Component letters, vol. 20, no. 10, pp. 542-544, 2010.
[15] H. C. Lu, C. S. Yeh, and S.-A. Wei, “Miniaturised 60 GHz rectangular ring bandpass filter in 90 nm CMOS technology,” Electron. Lett., vol. 47, no. 7, pp. 448-450, 2011.
[16] E. E. Djoumessi, “Compact packaged diplexer based on highly selective dual-mode bandpass filter,” IEEE Microwave Magazine, vol. 12, no. 1, pp. 89-93, 2011.
[17] J. S. Hong, and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microw. Guided Wave Letters, vol. 5, no. 11, pp. 371-372, 1995.
[18] A. Gorur, and C. Karpuz, “Miniature dual-mode microstrip filters,” IEEE Microw. Wireless Component Letters, vol. 17, no. 1, pp. 37-39, 2007.
[19] Y. C. Hsiao, and C. H. Tzeng, “Design of 60 GHz CMOS bandpass filters using complementary conducting strip transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, 2010, pp. 1712-1715.
[20] S. C. Chang, Y. M. Chen, S. F. Chang, Y. H. Jeng, C. L. Wei, C. H. Huang, and C. P. Jeng, “Compact millimeter-wave CMOS bandpass filters using grounded pedestal stepped impedance technique,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3850-3858, 2010.
[21] C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-um CMOS technology,” IEEE Electron Device Letter, vol. 29, no. 3, pp. 246-248, 2008.
[22] G. Y. Hsu, C. Y. Chen, and H. R. Chuang, “70GHz folded loop dual-mode bandpass filter fabricated using 0.18 μm standard CMOS technology,” IEEE Microw. and Guided Wave Letters, vol. 18, no. 9, pp. 587-589, 2008.
[23] A. Gorur, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 671-677, 2004.
[24]R. J. Mao, X. H. Tang, and F. Xiao, “Miniaturized dual-mode ring bandpass filters with patterned ground plane,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1539-1547, 2007.
[25]C. L. Yang, S. Y. Shu, and Y. C. Chiang, “Analysis and design of a chip filter with low insertion loss and two adjustable transmission zeros using 0.18-um CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 176-184, 2010.
[26] C. H. Ho, L. Fan, and K. Chang, “Slotline annular ring elements and their applications to resonator, filter and coupler design,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 9, pp. 1648-1650, 1993.
[27] J. S. Hong, H. Shaman, and Y. H. Chun, “Dual-mode microstrip open-loop resonators and filters,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1764-1770, 2007.
[28] L. Zhu, P. M. Wecowski, and K. Wu, “New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction,” IEEE Trans. Microw.Theory Tech., vol. 47, no. 5, pp. 650-654, 1999.
[29] J. A. Curtis, and S. J. Fiedziuszko, “Miniature dual mode microstrip filters,” in IEEE MTT-S Digest, 1991, pp. 443-446.
[30] C. C. Chen, and C. K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637-1647, 2004.
[31] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2512-2520, 2007.
[32] M. L. Lee, H. S. Wu, and C. K. C. Tzuang, “1.58 GHz third-order CMOS active bandpass filter with improved passband flatness,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 9, pp. 2275-2284, 2011.
[33] C. K. C. Tzuang, H. H. Wu, H. S. Wu et al., “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4548-4555, 2006.
[34] K. K. Huang, M. J. Chiang, and C. K. C. Tzuang, “A 3.3 mW K-band 0.18-μm 1P6M CMOS active bandpass filter using complementary current-reuse pair,” IEEE Microw. and Wireless Component letters, vol. 18, no. 2, pp. 94-96, 2008.
[35] J. S. Hong, and M. J. Lancaster, “Theory and experiment of novel microstrip slow-wave open-loop resonator filters,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2358-2365, 1997.
[36] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, Norwood, MA: Artech House, 1980.
[37] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications”, New York, NY, John Wiley & Sons, 2001.
[38] M. Berroth, and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 7, pp. 891-895, 1990.
[39] R. F. Harrington, “Time-Harmonic Electromagnetic Fields”, IEEE Press, 2001.
[40] L. H. Hsieh and K. Chang, “Dual-Mode Quasi-Elliptic-Function Bandpass Filters Using Ring Resonators with Enhanced-Coupling Tuning Stubs”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1340-1345, Mar. 2002.
[41] Yi-Ming Chen; Sheng-Fuh Chang; Cheng-Yu Chou; Kun-Hsing Liu, “A reconfigurable bandpass-bandstop filter based on varactor-loaded closed-ring resonators”, IEEE Microwave Magazine, vol. 10 , no. 1, pp. 138 – 140, Feb. 2009.
[42] S. S. Choi and D. C. Park, “Design and Fabrication of a New Dual-Mode Microstrip Ring Resonator Bandpass Filter Using Micromachining Technology”, in Korea-Japan Microwave Conference, Okinawa, Japan, Nov. 2007, pp. 101-104.
[43] H. C. Lu, C. S. Yeh, S. A. Wei and Y. T. Chou, '60 GHz CPW Dual-Mode Rectangular Ring Bandpass Filter Using Integrated Passive Devices Process', in Proc. Asia-Pacific Microwave Conf., Yokohama, Japan, Dec. 2010, pp. 1883-1886.
[44] S. Lucyszyn and I. D. Robertson, 'Monolithic Narrow-Band Filter Using Ultrahigh-& Tunable Active Inductors', IEEE Trans. Microw. Theory Tech., vol. 42, no. 12 , pp. 2617-2622, 1994.
[45] M. Ito, K. Maruhashi, S. Kishimoto, and K. Ohata, '60-GHz-Band Coplanar MMIC Active Filters', IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 743-750, Mar. 2004.
[46] K. W. Fan, C. C. Weng, Z. M. Tsai, H. Wang, and S. K. Jeng, 'K-Band MMIC Active Band-Pass Filters', IEEE Microw. Wireless Compon, Lett., vol. 15, no.1, pp. 19-21, Jan. 2005.
[47] B. P. Hopf, I. Wolff, and M. Guglielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2598–2602, Dec. 1994.
[48] R. Kaunisto, P. Alinikula, K. Stadius, and V. Porra, 'A Low-Power HBT MMIC Filter Based on Tunable Active Inductors', IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 209-211, Aug. 1997.
[49] T. Soorapanth and S. S Wong, 'A 0-dB IL 2140±30 MHz Bandpass Filter Utilizing Q-Enhanced Spiral Inductors in Standard CMOS', IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 579-586, May 2002.
[50] J. Kulyk and J. Haslett, 'A Monolithic CMOS 2368±30 MHz Transformer Based Q-Enhanced Series-C Coupled Resonator Bandpass Filter', IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 362-374, Feb. 2006
[51] B. Georgescu, I. G. Finvers, and F. Ghannouchi, '2 GHz Q-Enhanced Active Filter With Low Passband Distortion and High Dynamic Range', IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2029-2039, Sep. 2006.
[52] Adel S. Sedra and Kenneth C. Smith, Microelectric Circuits, 5th Edition, New York: Oxford, 2004.
[53] A. E. Atia and A. E. Williams, “New Type of Waveguide Bandpass Filters for Satellite Transponders,” COMSAT Tech. Rev., vol. 1, no. 1, pp. 21–43, 1971.
[54] A. E. Atia and A. E. Williams,, “Narrow-Bandpass Waveguide Filters”, IEEE Trans. Microw. Theory Tech., vol. 20, no. 4, pp. 258-265, 1972.
[55] R. Levy and S. B. Cohn, “A History of Microwave Filter Research, Design, and Development”, IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 1055-1067, 1984.
[56] S. Darlington, “A History of Network Synthesis and Filter Theory for Circuits Composed of Resistors, Inductors, and Capacitors”, IEEE Transactions on Circuits and Systems, vol. CAS-31, no. 1, pp. 3-13, 1984.
[57] I. C. Hunter, L. Billonet, B. Jarry, and P. Guillon, “Microwave Filters—Applications and Technology”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 794-805, 2002.
[58] C. Rauscher, “Microwave Active Filters Based on Transversal and Recursive Principles”, IEEE Trans. Microw. Theory Tech., vol. 33, no. 12, pp. 1350-1360, 1985.
[59] J. D. Rhodes and S. A. Alseyab, “The Generalized Chebyshev Low-Pass Prototype Filter”, Circuit Theory and Applications, Vol. 8, pp. 113-125, 1980.
[60] R. J. Cameron, C. M. Kudsia and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, NY, 2007.
[61] S. Amari, “Application of Representation Theory to Dual-Mode Microwave Bandpass Filters”, IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 430-441, 2009.
[62] S. Amari and M. Bekheit, “Physical Interpretation and Implications of Similarity Transformations in Coupled Resonator Filter Design”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1139-1153, 2007.
[63] R. J. Cameron, “Advanced Coupling Matrix Synthesis Techniques for Microwave Filters”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 1-10, 2003.
[64] R. J. Cameron, “General Coupling Matrix Synthesis Methods for Chebyshev Filtering Functions”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 433-442, 1999.
[65] S. Amari, Comments on “Description of Coupling Between Degenerate Modes of a Dual-Mode Microstrip Loop Resonator Using a Novel Perturbation Arrangement and Its Dual-Mode Bandpass Filter Applications”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2190-2192, 2004.
[66] S. Amari and U. Rosenberg, “A Universal Building Block for Advanced Modular Design of Microwave Filters”, IEEE Microw. Wireless Component letters, vol. 13, no. 12, pp. 541-543, 2003.
[67] M. Höft, “Y-Shape Dielectric Dual-Mode Filter”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3066-3071, 2008.
[68] J. S. Hong, “Microstrip Dual-Mode Band Reject Filter”, IEEE MTT-S Int. Microw. Symp. Digest, 17 June, 2005.
[69] G. M. Eryilmaz, E. Güntürkün, A. Görür, and C. Karpuz, Microstrip bandstop filter using a dual-mode square loop resonator, Microw. and Optl. Technol. Lett., Vol.51, No.1, pp.147-150, Nov. 2009
[70] David M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons Inc., 2005.
[71] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Science /Engineering/Math, 2000.
[72] J. A. Curtis, and S. J. Fiedziuszko, “Miniature dual mode microstrip filters,” in IEEE MTT-S International Microwave Symposium Digest, 1991, pp. 443-446.
[73] C. H. Ho and K. Chang, “Slotline Annular Ring Elements and Their Application to Resonator, Filter and Coupler Design”, IEEE Trans. Microw. Theory Tech., vol. 41, no. 9, pp. 1648-1650, 1993.
[74] Jianpeng Wang, Jia-Lin Li, Jia Ni, Shanshan Zhao, Wen Wu, and Dagang Fang,” Design of Miniaturized Microstrip Dual-Mode Filter With Source-Load Coupling”, IEEE Microw. Wireless Component letters, vol. 20, no. 6, pp. 319-321, 2010.
[75] J.S. Hong and M.J. Lancaster, “Realisation of quasielliptic function filter using dual-mode microstrip square loop resonators”, Electronics Letters, vol. 25, no. 24, pp. 2085-2086, 1995.
[76] C. Y. Chang and T. Itoh, “Microwave Active Filters Based on Coupled Negative Resistance Method”, IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, pp. 1879-1884, 1990.
[77] S. Amari, “Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradient-Based Optimization Technique”, IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1559-1564, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66186-
dc.description.abstract本論文之主題,乃分析以環形諧振器為主體之雙模濾波器電路,整合主動電路,設計於K頻段,並實現於零點一三微米互補式金氧半導體中。本文所提出之雙模環形諧振器,由一準橫向電磁模互補式金屬環狀傳輸線,連接並聯之金屬-絕緣體-金屬電容作為微擾元件而構成。在此,兩個交錯耦合對垂直放置,作為主動補償電路,與環形諧振器作對稱之聯結整合,可顯著提升諧振器之品質因子,亦可觀地諧振器之尺寸。本論文將探討雙模濾波器之基本特性,包含不考慮負載效應之諧振頻率、傳輸零點、耦合係數等等。此外,在討論主動補償與品質因子增進機制的同時,線性度、雜訊、功耗、溫度效應等等,皆為其伴隨的重要議題。並且,本文更專注探討不同的微擾模式,與不同的輸入/輸出埠之相對位置對於本雙模濾波器行為之影響。當輸入埠與輸出埠的距離不再是四分之一個等效波長時,或當微擾電容的位置改變時,更或,當存在一可變的信號源與負載之直接耦合元件時,濾波器的諧振頻率、傳輸零點等特性將如何隨之變化,本論文將根據以上各種狀況詳而分析之。基於此,本研究實現幾種不同微擾模式與不同輸入/輸出埠安排模式之雙模濾波器,包含有:對稱耦合、非對稱微擾耦合、非對稱負載耦合等模式。此幾種濾波器,除去直流偏壓電路與波源-負載耦合元件之面積,其雙模諧振器之尺寸皆為邊長270微米之正方形,且在每個雙模濾波器中,選用的交錯耦合對之電晶體尺寸及接線尺寸皆相同。此五型雙模濾波器具有類似的線性度、雜訊指數與功耗,然而其散射參數則迥異。本研究顯示,相同的微擾元件,接在不同的相對位置上,可以在頻率軸上提供兩個傳輸零點或者不提供任何傳輸零點。對於非對稱耦合型而言,即便沒有微擾電容存在,亦可在頻率軸上提供兩個傳輸零點,但可能有非互易性的問題。當電容性之波源-負載之耦合增加時,兩個傳輸零點將靠近。根據以上方法,本研究實現了頻寬為2.58 %、0 dB介入損耗,裙帶係數為1.87之帶通濾波器。當電感性之波源-負載之耦合存在時,該濾波器可設計為一帶止濾波器。本文提出之雙模結構與一通用的濾波器架構之等同性亦會在此討論。本論文即依循這些原理,對於設計窄頻、高選擇性、縮小化且省電之帶通/帶止濾波器,展示一系統化的設計方法,在高精準度的金氧半導體製程中實現。本研究提出的電路與其他已發表的單晶片濾波器與主動濾波器做比較,結果顯示本研究提出的電路,在電路面積、頻寬、頻帶選擇性、介入損耗及反射損耗等特性上,皆有相對良好的表現。zh_TW
dc.description.abstractThis dissertation presents analysis and design methods of monolithic K-band ring resonator dual-mode active filter fabricated in standard 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology. The dual-mode ring resonator comprises a quasi-TEM complementary-conductive-strip transmission-line (CCS TL) loop and a shunt metal-insulator-metal (MIM) perturbation capacitor. Two CMOS cross-coupled pairs as active compensation circuits are integrated with the ring resonator symmetrically, forming a robust approach, which both enhances the quality factor of dual modes and reduces the resonator size significantly. Basic characteristics of the filter are discussed, including the unloaded resonant frequencies, transmission zeros, coupling coefficients, Q-enhancement mechanism, linearity, noise and power consumption. Various perturbation schemes and input/output arrangements of the dual-mode resonator topology are also investigated in detail. Variations of resonance frequencies and transmission zeros are analyzed thoroughly under the following situations: the distance between input and output are not 1/4 propagating wavelength, the position of the perturbation capacitor changes, and capacitive or inductive source-load coupling elements exist. Types of ring resonator dual-mode active filters with various perturbation types and input/output arrangement are all implemented and compared, including symmetric type, asymmetric-perturbation-coupled (APC) type, and asymmetric-load-coupled (ALC) type. In implementation stage, for all these types, the areas of the dual-mode active resonators are all 270 by 270 μm2 (0.02 λ0 × 0.02 λ0) without source-load coupling elements, DC biasing circuits and pads, and the sizes of transistors are also the same. For these filters, with similar linearity, noise figure and power consumption characteristics, the great difference of S-parameters are noteworthy for discussion. An identical perturbation element can yield two transmission zeros for a bandpass filter or no transmission zeros depending on the position of the element. Asymmetric coupling prototypes provide two transmission zeros even when no perturbation capacitor added, with the cost of non-reciprocity. With enhanced capacitive source-load couplings, the two transmission zeros become closer, and from this a bandpass filter with 2.58 % fractional bandwidth, 0-dB insertion and skirt factor of 1.87 is implemented. With inductive source-load couplings, a bandstop filter can be implemented. The equivalence between the proposed dual-mode filter topology and the universal building block theory is also discussed, exhibiting a systematic method to design a narrowband, high selectivity, low-profile and low-power bandpass or bandstop active filters in CMOS with high accuracy. Compared with published monolithic dual-mode filters and active filters, the proposed filters are seen possessing small area, narrowband, small insertion loss, high return loss and small skirt factor.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:24:50Z (GMT). No. of bitstreams: 1
ntu-101-D96942031-1.pdf: 4601269 bytes, checksum: 14205f3c38af5f1789243f57e0c6611e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChapter 1 Introduction ---------------------------------------------------------------------- 1
1.1 Motivation of the Research --------------------------------------------------------------- 1
1.2 Focus and Organization of this Dissertation ------------------------------------------- 6
1.3 List of Contributions ---------------------------------------------------------------------- 7
Chapter 2 Introduction of Microwave Dual-Mode Filters and Active Filters --- 11
2.1 Review of Microwave Dual-Mode Filters --------------------------------------------- 11
2.1.1 The Origin ---------------------------------------------------------------------------- 11
2.1.2 The Coupling of the Dual Modes ------------------------------------------------- 14
2.1.3 Miniaturization Techniques and Monolithic Dual-Mode Filters -------------- 16
2.2 Review of Microwave Active Filters --------------------------------------------------- 17
2.2.1 The Microwave Active Filters ----------------------------------------------------- 17
2.2.2 The Dual-Mode Active Filters ----------------------------------------------------- 20
2.3 Chebyshev, Elliptic and Quasi-Elliptic Function Filters ---------------------------- 21
2.3.1 Chebyshev Function Filters -------------------------------------------------------- 21
2.3.2 Elliptic Function Filters ------------------------------------------------------------ 22
2.3.3 Quasi-Elliptic Function Filters ---------------------------------------------------- 25
2.4 Design Considerations of the Dual-Mode Filters ------------------------------------ 26
2.4.1 Resonance Frequencies ------------------------------------------------------------- 26
2.4.2 Transmission Zeros ------------------------------------------------------------------ 28
2.4.3 Coupling Coefficients --------------------------------------------------------------- 28
2.4.4 Quality Factors ----------------------------------------------------------------------- 29
2.4.5 Relations between Coupling Coefficients and Quality Factors --------------- 30
2.4.6 Coupling Matrix Representation -------------------------------------------------- 32
2.4.7 Network Synthesis Approach and Circuit Analysis Approach ---------------- 33
2.5 Performance Characterization of a Dual-Mode Active Filter ----------------------- 34
Chapter 3 Symmetric-Perturbation-Coupled CMOS Dual-Mode Active Filters 39
3.1 Overview ----------------------------------------------------------------------------------- 39
3.2 Synthetic Transmission Lines ----------------------------------------------------------- 43
3.3 Capacitance Loading Effects of the Dual-Mode Ring Resonator ------------------ 46
3.3.1 Equivalent Circuits ------------------------------------------------------------------ 46
3.3.2 Unloaded Resonance Frequencies ------------------------------------------------ 51
3.3.3 Transmission Zeros ------------------------------------------------------------------ 53
3.3.4 Comparison of Analytical and Simulation Results ------------------------------ 54
3.3.5 Coupling Coefficients and External Quality Factor ---------------------------- 57
3.4 The Q-Enhanced Ring Resonator ------------------------------------------------------- 59
3.4.1 Active Compensation and Resonance Frequencies ----------------------------- 59
3.4.2 Linearity, Noise, Power Consumption and Temperature ----------------------- 65
3.5 Measurement Results -------------------------------------------------------------------- 66
Chapter 4 Source-Load Coupling Adjustment of Dual-Mode Active Filters ---- 73
4.1 Introduction: Dual-Mode Topology as a Universal Building Block --------------- 73
4.2 The Enhanced Steep-Skirt Bandpass Filter with Capacitive Source-Load Coupling
------------------------------------------------------------------------------------------------ 80
4.2.1 Circuit Analysis --------------------------------------------------------------------- 80
4.2.2 Circuit Design ----------------------------------------------------------------------- 83
4.2.3 Simulation and Measurement Results -------------------------------------------- 87
4.3 The Bandstop Filter with Source-Load Inductive Coupling ------------------------ 91
4.3.1 Circuit Analysis ---------------------------------------------------------------------- 91
4.3.2 Circuit Design ------------------------------------------------------------------------ 95
4.3.3 Simulation and Measurement Results -------------------------------------------- 98
Chapter 5 Asymmetric Dual-Mode Active Filters ----------------------------------- 101
5.1 Asymmetric-Perturbation-Coupled (APC) Dual-Mode Active Filters ----------- 101
5.1.1 Introduction ------------------------------------------------------------------------- 101
5.1.2 Circuit Analysis -------------------------------------------------------------------- 102
5.1.3 Simulation and Measurement Results ------------------------------------------- 106
5.2 Asymmetric-Load-Coupled (ALC) Dual-Mode Active Filters -------------------- 110
5.2.1 Introduction ------------------------------------------------------------------------- 110
5.2.2 Circuit Analysis -------------------------------------------------------------------- 110
5.2.3 Simulation and Measurement Results ------------------------------------------- 117
Chapter 6 Conclusion --------------------------------------------------------------------- 121
6.1 Comparison Table and Discussion ---------------------------------------------------- 121
6.2 Suggestion of Future Research ---------------------------------------------------------129
Reference ------------------------------------------------------------------------------------- 131
Publication List ----------------------------------------------------------------------------- 139
dc.language.isoen
dc.subject積體電路zh_TW
dc.subject濾波器設計zh_TW
dc.subject主動濾波器zh_TW
dc.subject射頻電路zh_TW
dc.subject金氧半導體zh_TW
dc.subjectRF circuitsen
dc.subjectIntergrated circuitsen
dc.subjectCMOSen
dc.subjectFilter designen
dc.subjectActive filtersen
dc.title互補金氧半導體主動雙模環形諧振濾波器之分析與設計zh_TW
dc.titleAnalysis and Design of CMOS Active Dual-Mode Ring-Resonator Filtersen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee許博文(Powen Hsu),郭仁財(Jen-Tsai Kuo),吳瑞北(Ruey-Beei Wu),黃天偉(Tian-Wei Huang),王紳(Sen Wang)
dc.subject.keyword濾波器設計,主動濾波器,射頻電路,金氧半導體,積體電路,zh_TW
dc.subject.keywordFilter design,Active filters,RF circuits,CMOS,Intergrated circuits,en
dc.relation.page139
dc.rights.note有償授權
dc.date.accepted2012-04-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved