請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66183
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃宏斌 | |
dc.contributor.author | Yen-Tzu Lin | en |
dc.contributor.author | 林彥慈 | zh_TW |
dc.date.accessioned | 2021-06-17T00:24:44Z | - |
dc.date.available | 2020-02-13 | |
dc.date.copyright | 2020-02-13 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-11 | |
dc.identifier.citation | 1.陳正炎(1987),「投潭水作用下渠床沖刷剖面之研究」,台灣水利,35卷1期,pp.35-53。
2.錢寧、萬兆惠(1991),泥砂運動力學,科學出版社。 3.曹正明、段錦浩(1992),「不同壩高下逆坡消能塊之試驗研究」,中華水土保持學報,23卷1期,pp.63-72。 4.陳正炎、郭信成、鐘文傳(1993),「堰壩投潭沖刷坑特性因子之研究」,中華水土保持學報,24卷2期,pp.81-89。 5.陳正炎、彭思顯、鐘文傳(1994),「投潭水作用下局部沖刷之沖刷率研究」,中華水土保持學報25(3),p135-141。 6.游繁結(1995),「固床工間距之調查研究 (三)」,84 年度水土保持及集水區經營研究計畫成果彙編,農委會林業特刊第50號。 7.福留脩文(2000),「近自然工法之石組技術」,近自然河川工法研究會。 8.吳尚訓(2000),「固床工間距對河床穩定效果之研究」,逢甲大學土木及水利工程學系碩士論文。 9.陳聖文(2000),「防砂壩下游帶工佈置之試驗研究」,國立中興大學土木工程學系碩士論文。 10.李祈宏(2000),「砂礫河床之跌水沖刷分析」,國立中央大學土木工程研究所碩士論文。 11.柴鈁武(2001),「固床工抑制溪床泥砂沖刷效果之研究」,中華水土保持學報32(3),p235-243。 12.林雲晛(2002),「固床工水理特性之研究」,國立臺灣大學生物環境系統工程學系碩士論文。 13.郭昌樺(2002),「固床工間距對河床穩定性影響之研究」,國立中興大學水土保持學系碩士論文。 14.Hibbitt,Karlsson & Sorensen,INC.朱以文,蔡元奇等譯(2003),「ABAQUS/Standard-有限元軟件入門指南」。 15.黃彥文(2003),「固床工與輸砂量之相關研究」,國立臺灣大學生物環境系統工程學系碩士論文。 16.葉昭憲、連惠邦(2004),「近自然工法應用於溪流治理之試驗研究(Ⅱ)」,行政院國家科學委員會專題研究計畫。 17.林原巧(2005),「開口式固床工應用於野溪整治之研究」,國立屏東科技大學水土保持學系碩士論文。 18.林德貴(2006),生態工法砌石及預鑄塊堆疊構造物穩定分析(第一年),行政院農業委員會水土保持局九十五年度科技計畫研究報告。 19.水土保持手冊(2007),行政院農業委員會水土保持局。 20.李世強(2007),「河床沖刷對河溪生態工法安全之評析」,國立台北科技大學土木與防災學系碩士論文。 21.何國勇(2007),「近直線弧型開口式固床工應用於野溪治理之研究」,國立屏東科技大學水土保持學系碩士論文。 22.陳佳裕(2007),「防砂壩下游水流沖擊力與局部沖刷現象之探討」,國立臺灣大學生物環境系統工程學系碩士論文。 23.莊明德(2008),「河川砌石固床工之技術推廣與應用案例介紹」,自然保育季刊,第六十三期。 24.河道固床工破壞機制與減沖促淤新工法研擬(1/2)(2008),經濟部水利署水利規劃試驗所。 25.姚嘉耀(2009),「攔河堰對河道沖淤影響之研究-以集集攔河堰為例」,國立中興大學土木工程學系博士論文。 26.張凱博(2010),「變量流作用下之固床工沖刷室內試驗研究」,國立中興大學土木工程學系碩士論文。 27.黃宏信(2010),「自由跌水作用下坡度渠流之水力特性研究」,國立中興大學土木工程學系博士論文。 28.徐垚鉉(2010),「超臨界自由跌流沖擊水力特性之研究」,國立中興大學土木工程學系碩士論文。 29.郭權億(2010),「輸砂模式應用於陡坡溪流河床變遷之適用性研究-以高山溪為例」,國立成功大學水利及海洋工程學系碩士論文。 30.蕭品彥(2011),「超臨界自由跌流沖擊流場機制研究與視窗化應用」,國立中興大學土木工程學系碩士論文。 31.縣(市)管河川水仙溪水系規劃報告(2011),新北市政府。 32.吳紋瑩、盧昭堯(2012),「雙道固床工下游沖刷之室內試驗研究」,國立中興大學土木工程學系碩士論文。 33.河道變遷與穩定工法研析(2012),經濟部水利署水利規劃試驗所。 34.宋狄晉、許錫鑫、陳正炎(2013),「非水平式跌流工下游不同渠床粒徑穩定沖刷坑之探討」,水保技術8(4),p188-195。 35.102年度台美水利技術合作計畫(2014),經濟部水利署水利規劃試驗所。 36.水仙溪下游野溪治理工程之圖說(2015),行政院農業委員會水土保持局臺北分局。 37.大溪溪鐵路橋上游治理二期工程(2015),行政院農業委員會水土保持局臺北分局。 38.SRH數值模式應用於臺灣案例河川之研究(2015),經濟部水利署水利規劃試驗所。 39.連惠邦、曹文洪、胡春宏(2015),「明渠水力學」,高立圖書有限公司。 40.孫崇育(2015),「以渠槽試驗比較透水與不透水固床工下游之沖刷坑差異」,逢甲大學土木及水利工程學系碩士論文。 41.許錫鑫(2016),「坡度跌流工之局部沖刷特性研究」,國立中興大學土木工程學系博士論文。 42.河道堤防之基腳沖刷與保護試驗研究(第1期)(2016),經濟部水利署水利規劃試驗所。 43.吳嘉俊(2016),「透水式固床工之工法研發與水理特性研究」,行政院農業委員會水土保持局。 44.黃宏斌(2016),「105年水土保持防砂構造物沖刷坑形成機制與防治方法之探討」,行政院農業委員會水土保持局。 45.何晧愷(2017),「垂直跌水之沖刷探討」,國立臺灣大學生物環境系統工程學系碩士論文。 46.洪健豪、王豪偉、郭文達、欉順忠(2017),「河道上的豆腐岩-柔性固床工」,科技部,科學發展538期。 47.水土保持手冊(2017),行政院農業委員會水土保持局。 48.陳宥達(2017),「透過式固床工水理特性及抑制淘刷效果之研究」,國立屏東科技大學水土保持學系碩士論文。 49.劉彥廷(2018),「矩形側溢流堰水理分析」,國立臺灣大學生物環境系統工程學系碩士論文。 50.吳睿祥(2018),「利用水理模式評估粗坑吊橋上游野溪治理工程效益」,國立中興大學水土保持學系碩士論文。 51.水土保持局南投分局(2018),粗坑吊橋上游野溪整治二期工程。 52.水土保持工程設計參考圖冊(2018),行政院農業委員會水土保持局。 53.黃宏斌(2018),「野溪固床工水理機制試驗分析計畫」,行政院農業委員會水土保持局。 54.複雜河系沖淤模式NETSTARS V4.0使用者技術手冊(2019),台灣首府大學資訊與多媒體設計學系,研究報告第10901號。 55.Alireza Keshavarzi · Lila Khaje Noori(2010), “Environmental protection stability of river bed and banks using convex, concave, and linear bed sills” Environ Monit Assess (2010) 171:621–631 56.Bormann, N.E. and Julien, P.Y. (1991), “Scour downstream of grade-control structures.” Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 5, pp. 579-594. 57.Bennett, S.J., Alonso, C.V., Prasad, S.N., and Römkens, M.J.M. (2000), “Experiments on headcut growth migration in concentrated flows typical of upland areas.” Water Resour. Res, 36(7). 58.Farhoudi, J. and Smith, K. V. H. (1985), “Local Scour Profiles Downstream of Hydraulic Jump’’ J. Hydraul. Res., 23(4). 59.Hoffmans, J.C.M. Gijs. (1998), “Jet scour in Equilibrium phase.” Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 4, pp. 430-437. 60.Henk Verheij.(2011), “Jet scour.” Maritime Engineering. 61.Mason, P.J. and Arumugam, K. (1985), “Free jet scour below dams and flip buckets.” Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 2, pp. 220-235. 62.Miguel Wong and Gary Parker(2006), “Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Muller Using Their Own Database” Journal of Hydraulic Engineering, ASCE, 0733-9429(2006)132:11(1159) 63.Moslem Sohrabi, Alireza Keshavarzi & Mahmood Javan(2018), “Impact of bed sill shapes on scour protection in river bed and banks” International Journal of River Basin Management 64.Oliveto, G., Comuniello, V. and Onorati, B. (2008), “Temporal development of local scour downstream of positive-step stilling basins” River flow 2008, vol.2. 65.Pagliara, S.(2007), “Influence of sediment gradation on scour downstream of block ramps’’ J. Hydraul. Eng., 133(11) 66.SMS User Manual(V12.2), The Surface Water Modeling System 67.Subhasish Dey and Rajkumar V. Raikar(2007), “Scour below a High Vertical Drop” Journal of Hydraulic Engineering, ASCE, 0733-9429(2007)133(5):564. 68.SRH-2D version2:Theory and User’s Manual(2008) 69.VEN TE CHOW(1959), “OPEN-CHANNEL HYDRAULICS” | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66183 | - |
dc.description.abstract | 近年來因空拍機(UAV)的盛行,工程構造物也漸漸被要求應兼顧視覺上的美觀效果,因此各種創新型、拱型,或是複合式的固床工便應運而生,拱型固床工雖有許多優點,可導正流心、營造多元流況的棲地環境,及增加河川的溶氧量等,但其特殊形狀對下游產生的沖刷情形卻少有相關的研究探討,故本研究將針對不同的拱型固床工,深入探討其水理現象,及所造成之沖淤情形。
本研究將試驗渠槽佈置成上游坡度為2.7%,下游為水平渠道,並製作直線型、上拱型、下拱型、雙上拱型、雙下拱型,及上拱型且具低水河槽等六種固床工模型,變換0.0045cms~0.0178cms共七種流量,透過水槽試驗成果與SRH2D模擬結果,探討在河道中建置不同型式的固床工,其水理現象、沖刷深度、沖刷坑縱剖面之變化,及其下游的沖淤分布情況;此外,更進一步變換直線型固床工之高度,探討流量、堰高與最大沖刷深度之關係;另綜合固床工安定分析,以及受水流作用後,其應力、力矩、位移等分析成果,可得到結論茲分述如下: 1.水流流經直線型固床工,會呈均勻分布;流經上拱型會趨向渠道中心;流經下拱型會往兩岸偏折;流經上拱型且具低水河槽之固床工,其流量集中於渠道中心的現象會更明顯;流經雙上拱型會趨向兩個拱頂;流經雙下拱型,則會偏向兩岸及渠道中心。且沖刷坑之發展與上述水流之流向有相同的趨勢。 2.水流沖擊力與流量之關係有一頂峰值,此時水流沖擊力最大,然因本試驗之固床工較低矮,僅0.045m,且下游為水平渠道,故當流量再增加時,尾水深增加使上下游水位差減小,以致水流沖擊力亦逐漸減小。 3.直線型固床工的沖刷深度呈均勻分布,並以此作為對照組,進行各型式固床工之最大沖刷深度量化,得知上拱型在中心深了1.3%,兩岸淺了40%;下拱型在中心淺了66.9%,兩岸淺了26.7%,因頂峰值所對應之流量不同的緣故;上拱型且具低水河槽,中心深了27.2%,兩岸則淺了43.3%;雙上拱型在中心淺約27.2%,兩岸淺約33.3%,拱頂部分則深了8.6%;雙下拱型在中心淺了10.6%,兩岸深了10%,拱頂則是淺約39.7%。 4.試驗結果中,在堰高為0.045m時,最大沖刷深度與流量之關係亦有一頂峰值,當流量小於此峰值對應之流量,最大沖刷深度與流量呈正相關,此時堰前水深與固床工高度之比值小於等於1.73倍;反之,流量大於此峰值對應流量,當流量漸增時,因下游為水平渠道,且堰高較低矮,以致尾水深越深,跌水落差反而漸小,造成最大沖刷深度呈下降的趨勢,此時堰前水深與固床工高度之比值則大於1.73倍。在SRH2D模擬結果中,因堰高較高,故最大沖刷深度隨流量增加而增加。但整體來說,流量越大,沖刷量體仍會越多。 5.本研究認為上拱型與上拱型且具低水河槽之固床工較適合建置在直線河段,原因條列如下: (1)可有效導正流心,防止岸坡淘刷。 (2)可營造緩流、急流、淺灘、深潭等多樣化流況與環境,以提供生物棲息、運動、覓食,甚至上溯。 (3)可增加枯水期水位,兼顧水域生態。 (4)可利用拱的特性將水流作用力橫向傳遞至兩岸,結構較為穩固。 6.最大沖刷深度與固床工高度呈正比,且除了0.045m之堰高外,最大沖刷深度亦會與流量呈正比,因堰高越高,固床工受到下游尾水深的影響越小。此外,本研究經迴歸分析可求得直線型固床工之最大沖刷深度的經驗公式為: ε/H=5.174〖(q^2/(gH^3 ))〗^0.223 (R^2=0.98) 其中,ε為最大沖刷深度(m),H為固床工高度(m),q為單寬流量(cms/m),g為重力加速度(m/s^2)。另,該公式的適用範圍為渠槽寬度1m,水深介於0.005m至0.07m間,上游坡度為0.027且下游為水平渠道,泥砂容重為2.65t/m^3,泥砂粒徑d50為1.15mm,單寬流量的範圍則介於0.0045cms/m至0.0178cms/m之間。 7.在規劃設計階段時,即應進行固床工安定分析之狀況為:河道發生枯水期或是大洪水之頻率十分頻繁;在亞臨界流況,上游未淤積時,固床工設計高度超過2.7m,而上游淤滿時,固床工設計高度超過2.6m;在超臨界流況,上游未淤積時,固床工設計高度超過3.2m,而上游淤滿時,固床工設計高度超過2.7m;固床工設計高度僅有1m,但基礎土壤較軟弱。 8.在地基穩固時,最大應力與力矩發生之位置,均位於固床工上游面之全段底部,位移量最大的部分在固床工之頂部;而地基淘空時,因失去基礎支撐,故最大應力、力矩會發生在固床工之兩側,位移量最大處則轉為渠道中心。 | zh_TW |
dc.description.abstract | In recent years, due to the popularity of UAV, engineering structures are gradually required to take into account the visual aesthetic effect, so a variety of innovative, arched-type or composite groundsills emerge as the times require. Although arched-type groundsill have many advantages, they can guide the flow center, create a multi-flow habitat environment, and increase dissolved oxygen in rivers. However, its special shape has few related researches on the scouring, therefore, in this study, the hydraulic phenomenon and scouring caused by different arched groundsills will be discussed.
In this study, the experimental channel is arranged into upstream slope of 2.7%, downstream is a horizontal channel, and six kinds of groundsill models are made, such as linear, upper arched, lower arched, double upper arched, double lower arched, and upper arched with low flume. Seven kinds of flow are transformed from 0.0045cms to 0.0178cms. Through results of experiment and SRH2D simulation, discuss different types of groundsills in the river, the changes in the hydraulic phenomenon, scour depth, longitudinal profile of scour hole, and the distribution of scour and sediment in downstream. Moreover, the height of linear groundsill was further changed to explore the relationship between flow, groundsill height, and maximum scour depth. In addition, based on the stability analysis of groundsill, and the analysis of stress, moment, and displacement after the action of flow, the conclusion can be obtained as follows: 1.The flow through the linear groundsill will be evenly distributed; through the upper arched groundsill will tend to channel center; through the lower arched groundsill will deflect to both sides; and it is more obvious that the flow is concentrated in channel center when the flow through the upper arched groundsill with low flume; the flow through the double upper arched groundsill will tend to two vaults; through the double lower arched groundsill will tend to both sides and channel center. And the development of scour hole has the same trend as the flow direction. 2.There is a peak value between the impact force of water and the flow, and the impact force of water is the largest at this time. However, because the groundsill in this test is relatively short, only 0.045m, and the downstream is a horizontal channel, thus, when the flow increases again, the increase of tailwater depth reduces the water level difference between the upstream and downstream, so that the impact force of water decrease gradually. 3.The scour depth of linear groundsill was evenly distributed, and as a control group, the maximum scour depth of each type of groundsill was quantified. It was learned that the upper arched type is 1.3% deeper in the center and 40% shallower on both sides; the lower arched type is 66.9% shallower in the center and 26.7% shallower on both sides, due to the different flows corresponding to the peak value. The upper arched type with low flume, the center is 27.2% deeper, and the two banks are 43.3% shallower; the double upper arched type is about 27.2% shallower in the center, 33.3% shallower on both sides, and the vault part is 8.6% deeper; the double lower arched type is 10.6% shallower in the center, 10% deeper on both sides, and the vault is about 39.7 % shallower. 4.In the experimental results, when the height of groundsill is 0.045m, there is a peak in the relationship between the maximum scour depth and flow. When the flow is less than the flow corresponding to this peak, the maximum scour depth is positively related to the flow, at this time, the ratio of the water depth in front of the weir to the height of groundsill is less than or equal to 1.73 times. Conversely, if the flow is greater than the flow corresponding to this peak, when flow gradually increases, because the downstream is a horizontal channel and groundsill height is lower, so the deeper the tailwater depth, the lower the drop, and maximum scour depth will decrease, at this time, the ratio of the water depth in front of the weir to the height of groundsill is greater than 1.73 times. In the SRH2D simulation results, because the groundsill height is higher, so the maximum scour depth increases with the increase of flow. But overall, the larger the flow, the more the scouring volume will be. 5.In this study, it is considered that upper arched groundsill and upper arched groundsill with low flume are more suitable for straight river. The reasons are listed below: (1)It can effectively guide the flow center and prevent the bank from scouring. (2)It can create a variety of flow conditions and environments, such as slow flow, rapids, shoals and deep pools, so as to provide habitat, movement, foraging and even migration. (3)It can increase the water level during the dry season and take into account the aquatic ecosystem. (4)The characteristics of the arch can be used to transmit the force of water to both sides, and the structure is relatively stable. 6.The maximum scour depth is directly proportional to the height of groundsill, and except for the groundsill height of 0.045m, the maximum scour depth will also be positively related to the flow. Because the higher the groundsill height is, the lower the influence of downstream tailwater depth on the groundsill is. In addition, through the multiple regression analysis, the empirical formula of the maximum scour depth of linear groundsill in this study is as follows: ε/H=5.174〖(q^2/(gH^3 ))〗^0.223 (R^2=0.98) Among them, ε is the maximum scour depth (m), H is the height of groundsill (m), q is the single-width flow (cms/m), and g is gravitational acceleration (m/s^2). In addition, the application scope of this formula is 1m channel width, water depth is between 0.005m and 0.07m, upstream slope is 0.027 and downstream is a horizontal channel, unit weight of mud is 2.65 t/m^3, silt size d_50 is 1.15mm, the range of single-width flow is between 0.0045 cms/m and 0.0178 cms/m. 7.During the planning and designing stage, the situation that stability analysis of groundsill should be performed is: frequent dry seasons or floods in rivers; In subcritical flow conditions, the design height of groundsill exceeds 2.7m when upstream is not silted, and when upstream is fully silted, the design height of groundsill exceeds 2.6m; In supercritical flow conditions, the design height of groundsill exceeds 3.2m when upstream is not silted, and when upstream is fully silted, the design height of groundsill exceeds 2.7m; The design height of groundsill is only 1m, but the foundation soil is week. 8.When the foundation is stable, the maximum stress and moment are located at the bottom of entire section in the upstream surface of groundsill, and the largest displacement is at the top of groundsill. When the foundation is emptied, due to the loss of foundation supporting, the maximum stress and moment will occur on both sides of groundsill, and the largest displacement will be transferred to the center of channel. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:24:44Z (GMT). No. of bitstreams: 1 ntu-109-R06622003-1.pdf: 16772464 bytes, checksum: c5ef11e8c6c807941e1040a5f9731d89 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 碩士學位論文之口試委員會審定書 II
誌謝 III 摘要 IV Abstract VII 目錄 X 圖目錄 XII 表目錄 XVIII 第一章 前言 1 第二章 文獻回顧 3 2.1 固床工定義、型式 3 2.2 固床工水理特性 13 2.3 固床工與沖刷 17 2.4 固床工破壞原因探討 24 2.5 直線型與非直線型固床工特性差異 26 2.6 案例探討 29 2.7 小結 34 第三章 研究方法 36 3.1 理論分析 36 3.2 因次分析 40 3.3 水槽試驗 41 3.3.1 試驗規劃佈置 41 3.3.2 試驗內容及步驟 46 3.4 二維水理輸砂模式-SRH2D 56 3.4.1 SRH2D模式簡介 56 3.4.2 模式之參數設定 58 3.4.3 建置動床模型之步驟 63 3.5 安定分析 65 3.6 應力、力矩和位移之模擬 72 第四章 結果與討論 74 4.1 流速向量分布 74 4.2 沖擊力分析 79 4.3 沖刷坑剖面及其最大深度之比較 80 4.4 沖淤分布之比較 109 4.5 安定分析 117 4.6 應力、力矩和位移之分析成果 133 第五章 結論與建議 144 5.1 結論 144 5.2 建議 146 參考文獻 147 附錄-水面剖線與斷面比能 151 | |
dc.language.iso | zh-TW | |
dc.title | 拱型固床工之沖刷機制探討 | zh_TW |
dc.title | Discussion on the Scouring Mechanism of
Arched Groundsill | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 游繁結,連惠邦,吳嘉俊,詹勳全 | |
dc.subject.keyword | 拱型固床工,沖刷坑,水槽試驗,SRH2D,安定分析, | zh_TW |
dc.subject.keyword | Arched Groundsill,Scour Hole,Flume Experiment,SRH2D,stability analysis, | en |
dc.relation.page | 165 | |
dc.identifier.doi | 10.6342/NTU202000425 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 16.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。