Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡進發(Jing-Fa Tsai)
dc.contributor.authorHao-Wei Chungen
dc.contributor.author鐘顥瑋zh_TW
dc.date.accessioned2021-06-17T00:24:43Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-03
dc.identifier.citation[1] 經濟部能源局. (2016年9月). '2016年能源產業技術白皮書'.
[2] GWEC. (2019). 'Global Wind Report 2019'.
[3] 台灣再生能源發展概況. from https://www.taipower.com.tw/tc/page.aspx?mid=204 cid=1581 cchk=82fb957e-2fe8-49b6-90a9-b750387de936
[4] Veritas, N. (2002). Guidelines for design of wind turbines: Det Norske Veritas: Wind Energy Department, Ris ̜National Laboratory.
[5] Pandit, R. K., Infield, D. (2018). SCADA‐based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring purposes. IET Renewable Power Generation, 12(11), 1249-1255. doi: 10.1049/iet-rpg.2018.0156
[6] Lapira, E., Brisset, D., Ardakani, H. D., Siegel, D., Lee, J. (2012). Wind turbine performance assessment using multi-regime modeling approach. Renewable Energy, 45, 86-95.
[7] 黃國豪(2018)。風機及風場性能指標之研究。國立臺灣大學工程科學及海洋工程學研究所。
[8] 楊其昌(2016)。高斯混合模型在風機預兆式健康管理上的應用研究。國立臺灣大學工程科學及海洋工程學研究所。
[9] 葉柏廷(2016)。自組織映射圖在風機預兆式健康管理上的應用研究。國立臺灣大學工程科學及海洋工程學研究所。
[10] Uluyol, O., Parthasarathy, G., Foslien, W., Kim, K. (2011). Power curve analytic for wind turbine performance monitoring and prognostics. Paper presented at the Annual conference of the prognostics and health management society.
[11] Janssens, O., Noppe, N., Devriendt, C., Van de Walle, R., Van Hoecke, S. (2016). Data-driven multivariate power curve modeling of offshore wind turbines. Engineering Applications of Artificial Intelligence, 55, 331-338.
[12] International Electrotechnical Comission. (2017,). IEC 61400-12-1: Power performance measurements of electricity producing wind turbines. p. 1-96.
[13] Hernandez, W., López-Presa, J. L., Maldonado-Correa, J. L. (2016). Power performance verification of a wind farm using the Friedman’s test. Sensors, 16(6), 816.
[14] Kusiak, A., Verma, A. (2013). Monitoring Wind Farms With Performance Curves. IEEE Transactions on Sustainable Energy, 4(1), 192-199. doi: 10.1109/tste.2012.2212470
[15] 周資穎(2020)。應用同儕比較偵測風機異常之研究。國立臺灣大學工程科學及海洋工程學研究所。
[16] 謝佩鈞(2017)。相似分群方法在風場風機故障檢測的應用研究。國立臺灣大學工程科學及海洋工程學研究所。
[17] 詹勳智(2016)。類神經網路在風機預兆式健康管理上的應用研究。國立臺灣大學工程科學及海洋工程學研究所。
[18] Ester, M., Kriegel, H.-P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the Kdd.
[19] Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. arXiv preprint arXiv:1206.2944.
[20] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
[21] Epperson, J. F. (1987). On the Runge example. The American Mathematical Monthly, 94(4), 329-341.
[22] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., Louche, A. (2007). A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy policy, 35(11), 5708-5718.
[23] Hocaoğlu, F. O., Gerek, Ö. N., Kurban, M. (2009). A novel hybrid (wind–photovoltaic) system sizing procedure. Solar Energy, 83(11), 2019-2028.
[24] Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
[25] Vestas V80/2000 規格. from https://www.thewindpower.net/turbine_en_30_vestas_v80-2000.php
[26] Zhang, J., Cheng, M., Chen, Z., Fu, X. (2008). Pitch angle control for variable speed wind turbines. Paper presented at the 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.
[27] Ragheb, M., Ragheb, A. M. (2011). Wind turbines theory-the betz equation and optimal rotor tip speed ratio. Fundamental and advanced topics in wind power, 1(1), 19-38.
[28] Pao, L. Y., Johnson, K. E. (2011). Control of wind turbines. IEEE Control systems magazine, 31(2), 44-62.
[29] Pedersen, H., Marin, E. G. (2016). Yaw misalignment and power curve analysis. EWEA Analysis of Operating Wind Farms.
[30] Lapira, E. R. (2012). Fault detection in a network of similar machines using clustering approach. University of Cincinnati.
[31] Dong, X.-L., Gu, C.-K., Wang, Z.-O. (2006). Research on shape-based time series similarity measure. Paper presented at the 2006 International Conference on Machine Learning and Cybernetics.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66182-
dc.description.abstract本研究以台電某風場內15部風機冬季資料進行分析,基於同儕比較的概念對於風場中風機進行性能評估以及故障偵測,目地為找出造成風機性能低落的原因為何。性能評估部分透過隨機森林演算法對性能較佳的模範風機學習其風速、轉子轉速及葉片旋角對於發電功率的影響,藉此預測其他風機在不同操作條件下,理想發電功率為何,並計算實際功率與預測功率間的差值,藉由差值大小來評斷該部風機性能狀況,在資料範圍期間內,共偵測出3部風機有性能低落的情況發生。針對性能狀況較差的風機,將其各項參數透過與風場其他部風機互相比較的方法,找出導致性能狀況低落的故障原因為何。
在後續故障偵測部份對於各項參數故障與否提出了幾種偵測方法,透過時間序列的相似度分析判斷其風速計是否產生異常狀況;轉子轉速及葉片旋角部分,則透過模範風機擬和出一條參考曲線,檢視風機的轉子轉速與葉片旋角行為是否正常;偏航系統部分藉由風向、機艙角度以及風速功率做判斷。在各項參數皆為正常的狀態下,發電功率仍然較低落,則判斷為發電機發生異常情形。故障偵測結果中發現性能低落的3部風機主要故障原因為風速計異常及發電機異常,另外有6部風機偵測到風速計異常狀況產生,在整個風場內的15部風機不論風向計正常與否都有偏航系統或機艙角度計異常狀況發生。
zh_TW
dc.description.abstractTo find out the reasons why the performance of some wind turbines was lower than others, the winter data of 15 wind turbines in a wind farm of Taipower were analyzed based on the concept of peer comparison in this study. The analysis included performance evaluation and fault detection. In the performance evaluation part, the relations between the superior wind turbines’ wind speed, rotor speed, pitch ratio and power were learned by the Random Forest Algorithm in order to predict the ideal power in different operating conditions of other wind turbines. The performance of a wind turbine was evaluated by the difference between the actual power and the predict power of the wind turbine. Three wind turbines were detected with the conditions of the low power performance.
In the fault detect part, several detecting methods were used to detect whether the operating parameters of wind turbines were normal or not. The wind speed meters were analyzed by the similarity analysis of time series. The rotor speeds and pitch angles were analyzed by the fitting curve of these two of model wind turbine. The misalignment of wind turbine and yaw system were evaluated by the angle between wind direction and nacelle. If the three conditions above were normal of a low performance wind turbine, then it was attributed to the abnormal power output of the generator. The analysis shows that the main reasons of the three low power performance turbines are the abnomal of wind speed meter and generator. In addition, there were six wind turbines which had abnormal conditions of wind direction. And there were many yaw misalignments in all turbines of the wind farm.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:24:43Z (GMT). No. of bitstreams: 1
U0001-0202202114335100.pdf: 8403498 bytes, checksum: b7bf0a1f7b75d8645c95dcb3f9f43d92 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 I
ABSTRACT II
圖目錄 V
表目錄 X
第一章、緒論 1
1-1研究背景與研究動機 1
1-2文獻回顧 2
1-3研究內容 2
1-4論文架構 3
第二章、使用方法及原理 4
2-1 DBSCAN 4
2-2貝葉斯優化 5
2-3隨機森林演算法 6
2-4 三次樣條內插法 7
2-5階層式分群法 9
第三章、資料介紹及前處理 11
3-1資料特徵選擇 11
3-1-1 資料介紹 11
3-1-2 資料特徵選擇 11
3-2資料過濾及前處理 12
3-2-1 資料正規化 12
3-2-2 異常資料過濾 13
3-3訓練資料建立 14
3-3-1 模範風機篩選 14
3-3-2 其餘參數參考曲線 15
第四章、風機性能分析與異常偵測 17
4-1 風力發電機性能分析 17
4-1-1 以隨機森林演算法近似訓練資料 17
4-1-2 健康狀況指標 17
4-1-3 風機健康狀況分析 18
4-2 風機異常狀況偵測 19
4-2-1 各參數評估方法 19
4-2-2 風機故障狀況說明 22
4-2-3異常風向故障偵測 26
4-2-4偏航系統故障偵測 26
4-3 風機異常狀況總結 27
第五章、結論與建議 29
5-1 結論 29
5-2 建議 30
參考文獻 31
附圖 34
附表 87
原始程式碼 90
dc.language.isozh-TW
dc.title利用同儕比較方法進行風機故障之偵測zh_TW
dc.titleTo Apply the Peer Comparison Method to Detect the Abnormal Operation of Wind Turbineen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee趙修武(Siou-Wu Chau),林恆山(Hen-Shan Lin),張瑞益(JUI-Yi Chang)
dc.subject.keyword風力發電機,同儕比較,隨機森林,時間序列相似度,故障偵測,zh_TW
dc.subject.keywordWind Turbine,Peer Comparison,Random Forest,Time series,Fault detection,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202100379
dc.rights.note有償授權
dc.date.accepted2021-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-0202202114335100.pdf
  目前未授權公開取用
8.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved