Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66157
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫(Bor-Luen Chiang)
dc.contributor.authorKuan-Hua Chuen
dc.contributor.author朱冠驊zh_TW
dc.date.accessioned2021-06-17T00:23:51Z-
dc.date.available2012-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-05-18
dc.identifier.citationAkbari, O., DeKruyff, R. H., and Umetsu, D. T. (2001). Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2, 725-731.
Akbari, O., Freeman, G. J., Meyer, E. H., Greenfield, E. A., Chang, T. T., Sharpe, A. H., Berry, G., DeKruyff, R. H., and Umetsu, D. T. (2002). Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8, 1024-1032.
Akdis, C. A., Blesken, T., Wymann, D., Akdis, M., and Blaser, K. (1998). Differential regulation of human T cell cytokine patterns and IgE and IgG4 responses by conformational antigen variants. Eur J Immunol 28, 914-925.
Akdis, M., Verhagen, J., Taylor, A., Karamloo, F., Karagiannidis, C., Crameri, R., Thunberg, S., Deniz, G., Valenta, R., Fiebig, H., et al. (2004). Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199, 1567-1575.
Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A., and Leonard, W. J. (2005). A role for TSLP in the development of inflammation in an asthma model. J Exp Med 202, 829-839.
Alpan, O., Rudomen, G., and Matzinger, P. (2001). The role of dendritic cells, B cells, and M cells in gut-oriented immune responses. J Immunol 166, 4843-4852.
Arm, J. P., and Lee, T. H. (1992). The pathobiology of bronchial asthma. Adv Immunol 51, 323-382.
Asano, M., Toda, M., Sakaguchi, N., and Sakaguchi, S. (1996). Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184, 387-396.
Azzawi, M., Johnston, P. W., Majumdar, S., Kay, A. B., and Jeffery, P. K. (1992). T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. Am Rev Respir Dis 145, 1477-1482.
Baird, A. M., and Parker, D. C. (1996). Analysis of low zone tolerance induction in normal and B cell-deficient mice. J Immunol 157, 1833-1839.
Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E., Saulsbury, F. T., Chance, P. F., and Ochs, H. D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27, 20-21.
Bodor, J., Fehervari, Z., Diamond, B., and Sakaguchi, S. (2007). ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur J Immunol 37, 884-895.
Brimnes, J., Allez, M., Dotan, I., Shao, L., Nakazawa, A., and Mayer, L. (2005). Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol 174, 5814-5822.
Broere, F., Wieten, L., Klein Koerkamp, E. I., van Roon, J. A., Guichelaar, T., Lafeber, F. P., and van Eden, W. (2008). Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J Immunol 181, 899-906.
Buning, J., Hundorfean, G., Schmitz, M., Zimmer, K. P., Strobel, S., Gebert, A., and Ludwig, D. (2006). Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn's colitis patients. FASEB J 20, 359-361.
Burke, F., Stagg, A. J., Bedford, P. A., English, N., and Knight, S. C. (2004). IL-10-producing B220+CD11c- APC in mouse spleen. J Immunol 173, 2362-2372.
Busse, W. W., Ring, J., Huss-Marp, J., and Kahn, J.-E. (2010). A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J Allergy Clin Immunol 125, 803-813.
Byrne, S. N., and Halliday, G. M. (2005). B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J Invest Dermatol 124, 570-578.
Chehade, M., and Mayer, L. (2005). Oral tolerance and its relation to food hypersensitivities. J Allergy Clin Immunol 115, 3-12; quiz 13.
Chen, X., and Jensen, P. E. (2007). Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+ CD4 T cells. J Immunol 179, 2046-2050.
Chen, X., Song, C.-H., Feng, B.-S., Li, T.-L., Li, P., Zheng, P.-Y., Chen, X.-M., Xing, Z., and Yang, P.-C. (2011). Intestinal epithelial cell-derived integrin avb6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol 90, 751-759.
Chen, Y., Inobe, J., Marks, R., Gonnella, P., Kuchroo, V. K., and Weiner, H. L. (1995). Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177-180.
Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A., and Weiner, H. L. (1994). Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237-1240.
Chirdo, F. G., Millington, O. R., Beacock-Sharp, H., and Mowat, A. M. (2005). Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol 35, 1831-1840.
Chu, K. H., Lee, C. C., Hsin, S. C., Cai, B. C., Wang, J. H., and Chiang, B. L. (2010). Arsenic trioxide alleviates airway hyperresponsiveness and eosinophilia in a murine model of asthma. Cell Mol Immunol 7, 375-380.
Coombes, J. L., Siddiqui, K. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y., and Powrie, F. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204, 1757-1764.
Cosmi, L., Liotta, F., Lazzeri, E., Francalanci, M., Angeli, R., Mazzinghi, B., Santarlasci, V., Manetti, R., Vanini, V., Romagnani, P., et al. (2003). Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 102, 4107-4114.
Cretney, E., Xin, A., Shi, W., Minnich, M., Masson, F., Miasari, M., Belz, G. T., Smyth, G. K., Busslinger, M., Nutt, S. L., and Kallies, A. (2011). The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12, 304-311.
Curotto de Lafaille, M. A., and Lafaille, J. J. (2009). Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626-635.
de Heer, H. J., Hammad, H., Soullie, T., Hijdra, D., Vos, N., Willart, M. A., Hoogsteden, H. C., and Lambrecht, B. N. (2004). Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200, 89-98.
Eynon, E. E., and Parker, D. C. (1992). Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J Exp Med 175, 131-138.
Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L., Fioretti, M. C., Alegre, M. L., and Puccetti, P. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4, 1206-1212.
Farstad, I. N., Halstensen, T. S., Fausa, O., and Brandtzaeg, P. (1994). Heterogeneity of M-cell-associated B and T cells in human Peyer's patches. Immunology 83, 457-464.
Fife, B. T., Guleria, I., Gubbels Bupp, M., Eagar, T. N., Tang, Q., Bour-Jordan, H., Yagita, H., Azuma, M., Sayegh, M. H., and Bluestone, J. A. (2006). Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 203, 2737-2747.
Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D., and Anderton, S. M. (2002). B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3, 944-950.
Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
Freeman, J. (1911). Further observations on the treatment of hay fever by hypodermic inoculations of pollen vaccine. The Lancet 178, 814-817.
Friedman, A., and Weiner, H. L. (1994). Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A 91, 6688-6692.
Frossard, C. P., Hauser, C., and Eigenmann, P. A. (2004). Antigen-specific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J Allergy Clin Immunol 114, 377-382.
Fujihashi, K., Dohi, T., Rennert, P. D., Yamamoto, M., Koga, T., Kiyono, H., and McGhee, J. R. (2001). Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci U S A 98, 3310-3315.
Godfrey, V. L., Wilkinson, J. E., and Russell, L. B. (1991). X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 138, 1379-1387.
Gonnella, P. A., Chen, Y., Inobe, J.-i., Komagata, Y., Quartulli, M., and Weiner, H. L. (1998). In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR-transgenic mice. J Immunol 160, 4708-4718.
Gonnella, P. A., Waldner, H. P., and Weiner, H. L. (2001). B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. J Immunol 166, 4456-4464.
Gri, G., Piconese, S., Frossi, B., Manfroi, V., Merluzzi, S., Tripodo, C., Viola, A., Odom, S., Rivera, J., Colombo, M. P., and Pucillo, C. E. (2008). CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29, 771-781.
Griseri, T., Asquith, M., Thompson, C., and Powrie, F. (2010). OX40 is required for regulatory T cell-mediated control of colitis. J Exp Med 207, 699-709.
Groux, H., O'Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J. E., and Roncarolo, M. G. (1997). A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737-742.
Hallquist, N. A., Khoo, C., and Cousins, R. J. (1996). Lipopolysaccharide regulates cysteine-rich intestinal protein, a zinc-finger protein, in immune cells and plasma. J Leukoc Biol 59, 172-177.
Hamelmann, E., Schwarze, J., Takeda, K., Oshiba, A., Larsen, G. L., Irvin, C. G., and Gelfand, E. W. (1997). Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156, 766-775.
Haneda, K., Sano, K., Tamura, G., Sato, T., Habu, S., and Shirato, K. (1997). TGF-beta induced by oral tolerance ameliorates experimental tracheal eosinophilia. J Immunol 159, 4484-4490.
Hansen, G., Berry, G., DeKruyff, R. H., and Umetsu, D. T. (1999). Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 103, 175-183.
Harris, D. P., Haynes, L., Sayles, P. C., Duso, D. K., Eaton, S. M., Lepak, N. M., Johnson, L. L., Swain, S. L., and Lund, F. E. (2000). Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1, 475-482.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Huang, H. Y., Lee, C. C., and Chiang, B. L. (2009). Short hairpin RNAs against eotaxin or interleukin-5 decrease airway eosinophilia and hyper-responsiveness in a murine model of asthma. J Gene Med 11, 112-118.
Iwasaki, A., and Kelsall, B. L. (2001). Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer's patch dendritic cells. J Immunol 166, 4884-4890.
Kearley, J., Barker, J. E., Robinson, D. S., and Lloyd, C. M. (2005). Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 202, 1539-1547.
Kirchner, J., Forbush, K. A., and Bevan, M. J. (2001). Identification and characterization of thymus LIM protein: targeted disruption reduces thymus cellularity. Mol Cell Biol 21, 8592-8604.
Kraus, T. A., Brimnes, J., Muong, C., Liu, J. H., Moran, T. M., Tappenden, K. A., Boros, P., and Mayer, L. (2005). Induction of mucosal tolerance in Peyer's patch-deficient, ligated small bowel loops. J Clin Invest 115, 2234-2243.
Kunkel, D., Kirchhoff, D., Nishikawa, S., Radbruch, A., and Scheffold, A. (2003). Visualization of peptide presentation following oral application of antigen in normal and Peyer's patches-deficient mice. Eur J Immunol 33, 1292-1301.
Lambrecht, B. N., Salomon, B., Klatzmann, D., and Pauwels, R. A. (1998). Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J Immunol 160, 4090-4097.
Lanningham-Foster, L., Green, C. L., Langkamp-Henken, B., Davis, B. A., Nguyen, K. T., Bender, B. S., and Cousins, R. J. (2002). Overexpression of CRIP in transgenic mice alters cytokine patterns and the immune response. Am J Physiol Endocrinol Metab 282, E1197-1203.
Lee, C. C., Huang, H. Y., and Chiang, B. L. (2008). Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther 16, 60-65.
Lee, C. C., Huang, H. Y., and Chiang, B. L. (2011). Lentiviral-mediated interleukin-4 and interleukin-13 RNA interference decrease airway inflammation and hyperresponsiveness. Hum Gene Ther 22, 577-586.
Lee, Y. L., Fu, C. L., Ye, Y. L., and Chiang, B. L. (1999). Administration of interleukin-12 prevents mite Der p 1 allergen-IgE antibody production and airway eosinophil infiltration in an animal model of airway inflammation. Scand J Immunol 49, 229-236.
Lewkowich, I. P., Herman, N. S., Schleifer, K. W., Dance, M. P., Chen, B. L., Dienger, K. M., Sproles, A. A., Shah, J. S., Kohl, J., Belkaid, Y., and Wills-Karp, M. (2005). CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202, 1549-1561.
Martins, G., and Calame, K. (2008). Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 26, 133-169.
Maynard, C. L., Harrington, L. E., Janowski, K. M., Oliver, J. R., Zindl, C. L., Rudensky, A. Y., and Weaver, C. T. (2007). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol 8, 931-941.
Miller, A., Lider, O., Roberts, A. B., Sporn, M. B., and Weiner, H. L. (1992). Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A 89, 421-425.
Mizoguchi, A., Mizoguchi, E., Smith, R. N., Preffer, F. I., and Bhan, A. K. (1997). Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 186, 1749-1756.
Mora, J. R., Bono, M. R., Manjunath, N., Weninger, W., Cavanagh, L. L., Rosemblatt, M., and von Andrian, U. H. (2003). Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88-93.
Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3, 331-341.
Mucida, D., Kutchukhidze, N., Erazo, A., Russo, M., Lafaille, J. J., and Curotto de Lafaille, M. A. (2005). Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115, 1923-1933.
Nakao, A., Miike, S., Hatano, M., Okumura, K., Tokuhisa, T., Ra, C., and Iwamoto, I. (2000). Blockade of transforming growth factor beta/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J Exp Med 192, 151-158.
Nishizuka, Y., and Sakakura, T. (1969). Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753-755.
Oh, J. W., Seroogy, C. M., Meyer, E. H., Akbari, O., Berry, G., Fathman, C. G., Dekruyff, R. H., and Umetsu, D. T. (2002). CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. J Allergy Clin Immunol 110, 460-468.
Okamura, T., Fujio, K., Shibuya, M., Sumitomo, S., Shoda, H., Sakaguchi, S., and Yamamoto, K. (2009). CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A 106, 13974-13979.
Okazaki, T., Tanaka, Y., Nishio, R., Mitsuiye, T., Mizoguchi, A., Wang, J., Ishida, M., Hiai, H., Matsumori, A., Minato, N., and Honjo, T. (2003). Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9, 1477-1483.
Ono, M., Shimizu, J., Miyachi, Y., and Sakaguchi, S. (2006). Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein(high), Foxp3-expressing CD25+ and CD25- regulatory T cells. J Immunol 176, 4748-4756.
Reichardt, P., Dornbach, B., Rong, S., Beissert, S., Gueler, F., Loser, K., and Gunzer, M. (2007). Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood 110, 1519-1529.
Rimoldi, M., Chieppa, M., Salucci, V., Avogadri, F., Sonzogni, A., Sampietro, G. M., Nespoli, A., Viale, G., Allavena, P., and Rescigno, M. (2005). Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6, 507-514.
Robinson, D. S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A. M., Corrigan, C., Durham, S. R., and Kay, A. B. (1992). Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326, 298-304.
Rothenberg, M. E. (1998). Eosinophilia. N Engl J Med 338, 1592-1600.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562.
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155, 1151-1164.
Sakamoto, N., Shibuya, K., Shimizu, Y., Yotsumoto, K., Miyabayashi, T., Sakano, S., Tsuji, T., Nakayama, E., Nakauchi, H., and Shibuya, A. (2001). A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur J Immunol 31, 1310-1316.
Samsom, J. N. (2004). Regulation of antigen-specific regulatory T-cell induction via nasal and oral mucosa. Crit Rev Immunol 24, 157-177.
Samsom, J. N., van Berkel, L. A., van Helvoort, J. M., Unger, W. W., Jansen, W., Thepen, T., Mebius, R. E., Verbeek, S. S., and Kraal, G. (2005). Fc gamma RIIB regulates nasal and oral tolerance: a role for dendritic cells. J Immunol 174, 5279-5287.
Santos, L. M., al-Sabbagh, A., Londono, A., and Weiner, H. L. (1994). Oral tolerance to myelin basic protein induces regulatory TGF-beta-secreting T cells in Peyer's patches of SJL mice. Cell Immunol 157, 439-447.
Shibuya, A., Sakamoto, N., Shimizu, Y., Shibuya, K., Osawa, M., Hiroyama, T., Eyre, H. J., Sutherland, G. R., Endo, Y., Fujita, T., et al. (2000). Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 1, 441-446.
Singh, A., Carson, W. F. t., Secor, E. R., Jr., Guernsey, L. A., Flavell, R. A., Clark, R. B., Thrall, R. S., and Schramm, C. M. (2008). Regulatory role of B cells in a murine model of allergic airway disease. J Immunol 180, 7318-7326.
Smith, P. D., Smythies, L. E., Shen, R., Greenwell-Wild, T., Gliozzi, M., and Wahl, S. M. (2011). Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 4, 31-42.
Spahn, T. W., Fontana, A., Faria, A. M., Slavin, A. J., Eugster, H. P., Zhang, X., Koni, P. A., Ruddle, N. H., Flavell, R. A., Rennert, P. D., and Weiner, H. L. (2001). Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur J Immunol 31, 1278-1287.
Stampfli, M. R., Cwiartka, M., Gajewska, B. U., Alvarez, D., Ritz, S. A., Inman, M. D., Xing, Z., and Jordana, M. (1999). Interleukin-10 gene transfer to the airway regulates allergic mucosal sensitization in mice. Am J Respir Cell Mol Biol 21, 586-596.
Strauss, L., Bergmann, C., Szczepanski, M. J., Lang, S., Kirkwood, J. M., and Whiteside, T. L. (2008). Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180, 2967-2980.
Suen, J. L., Wu, C. H., Chen, Y. Y., Wu, W. M., and Chiang, B. L. (2001). Characterization of self-T-cell response and antigenic determinants of U1A protein with bone marrow-derived dendritic cells in NZB x NZW F1 mice. Immunology 103, 301-309.
Sun, J. B., Flach, C. F., Czerkinsky, C., and Holmgren, J. (2008). B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit. J Immunol 181, 8278-8287.
Tseng, J. (1984). A population of resting IgM-IgD double-bearing lymphocytes in Peyer's patches: the major precursor cells for IgA plasma cells in the gut lamina propria. J Immunol 132, 2730-2735.
Tsitoura, D. C., Yeung, V. P., DeKruyff, R. H., and Umetsu, D. T. (2002). Critical role of B cells in the development of T cell tolerance to aeroallergens. Int Immunol 14, 659-667.
Tsuji, N. M., Mizumachi, K., and Kurisaki, J. (2001). Interleukin-10-secreting Peyer's patch cells are responsible for active suppression in low-dose oral tolerance. Immunology 103, 458-464.
van Helvoort, J. M., Samsom, J. N., Chantry, D., Jansen, W., Schadee-Eestermans, I., Thepen, T., Mebius, R. E., and Kraal, G. (2004). Preferential expression of IgG2b in nose draining cervical lymph nodes and its putative role in mucosal tolerance induction. Allergy 59, 1211-1218.
van Rijt, L. S., Jung, S., Kleinjan, A., Vos, N., Willart, M., Duez, C., Hoogsteden, H. C., and Lambrecht, B. N. (2005). In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201, 981-991.
Vella, A. T., Scherer, M. T., Schultz, L., Kappler, J. W., and Marrack, P. (1996). B cells are not essential for peripheral T-cell tolerance. Proc Natl Acad Sci U S A 93, 951-955.
Winkler, B., Hufnagl, K., Spittler, A., Ploder, M., Kallay, E., Vrtala, S., Valenta, R., Kundi, M., Renz, H., and Wiedermann, U. (2006). The role of Foxp3+ T cells in long-term efficacy of prophylactic and therapeutic mucosal tolerance induction in mice. Allergy 61, 173-180.
Winzler, C., Rovere, P., Rescigno, M., Granucci, F., Penna, G., Adorini, L., Zimmermann, V. S., Davoust, J., and Ricciardi-Castagnoli, P. (1997). Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185, 317-328.
Wolf, S. D., Dittel, B. N., Hardardottir, F., and Janeway, C. A., Jr. (1996). Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184, 2271-2278.
Wolvers, D. A., Coenen-de Roo, C. J., Mebius, R. E., van der Cammen, M. J., Tirion, F., Miltenburg, A. M., and Kraal, G. (1999). Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J Immunol 162, 1994-1998.
Worbs, T., Bode, U., Yan, S., Hoffmann, M. W., Hintzen, G., Bernhardt, G., Forster, R., and Pabst, O. (2006). Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203, 519-527.
Yamanaka, T., Straumfors, A., Morton, H., Fausa, O., Brandtzaeg, P., and Farstad, I. (2001). M cell pockets of human Peyer's patches are specialized extensions of germinal centers. Eur J Immunol 31, 107-117.
Yasuda, K., Kosugi, A., Hayashi, F., Saitoh, S., Nagafuku, M., Mori, Y., Ogata, M., and Hamaoka, T. (2000). Serine 6 of Lck tyrosine kinase: a critical site for Lck myristoylation, membrane localization, and function in T lymphocytes. J Immunol 165, 3226-3231.
Yu, S. Y. (2007) Study on the gene mediating oral tolerance in a murine model of allergic asthma, MA thesis, National Taiwan University, Taipei.
Zheng, S. G., Wang, J. H., Stohl, W., Kim, K. S., Gray, J. D., and Horwitz, D. A. (2006). TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol 176, 3321-3329.
Zhong, G., Reis e Sousa, C., and Germain, R. N. (1997). Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro. J Exp Med 186, 673-682.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66157-
dc.description.abstract氣喘是一種常見的慢性呼吸道發炎疾病。透過黏膜給予過敏原引起的免疫耐受性,已經被用來當做治療過敏疾病的方法。研究發現,皮耶氏體中最主要的細胞群─B細胞,可以促使調節性T細胞的生成。本篇研究即是針對皮耶氏體的B細胞,在產生調節性T細胞中扮演的角色,以及這些調節性T細胞的功能。利用體外抑制細胞增生實驗及測量細胞激素方法來確定這些由皮耶氏體B細胞刺激產生的調節性T細胞〈在此稱為Treg-of-B(P)細胞〉。對於測量 Treg-of-B(P)細胞的生理功能,我們利用細胞移植實驗將Treg-of-B(P)細胞注入用OVA蛋白致敏的小鼠體內,藉由偵測肺沖洗液中OVA特異性免疫球E的濃度,第二型T細胞激素,嗜伊紅性白血球增多現象,以及組織切片染色法確定Treg-of-B(P)細胞療效。
首先,我們證明連續五天口服餵食小鼠OVA 0.5毫克,可以降低肺沖洗液中第二型T細胞反應。我們也發現,高劑量的OVA〈20毫克〉會降低CD4 T細胞的數量。反之,低劑量餵食過敏原可以幫助生成調節性T細胞。試管外實驗證明Treg-of-B細胞具有抑制T細胞增生的能力。相較於脾臟B細胞,從皮耶氏體分出來的B細胞,在接觸過抗原之後,呈現較不活化的狀態。此外,藉由近距離的細胞接觸,以及介白素-10分泌促成此Treg-of-B細胞的抑制作用。利用螢光流式細胞儀分析發現,Treg-of-B(P)細胞會表現CTLA4、ICOS、OX40、PD-1和TNFRII。分泌的細胞激素方面,Treg-of-B(P)細胞會分泌低量的介白素-2,高量的介白素-10,甚至比自然產生的調節性T細胞還高。我們進一步的分析發現,介白素-10,GITR及PD-1都參與調控Treg-of-B(P)細胞的抑制作用中。除此之外,本篇實驗也比較了不同B細胞產生調節性T細胞的能力。在脾臟及皮耶氏體中的FOB及MZB細胞,可以將初始T細胞(naïve T cell)轉變為調節性T細胞。並且,皮耶氏體中的B細胞比起一般認為的專業的抗原呈現細胞,在此為樹突細胞,在生成調節性T細胞的能力更為明顯。為了確定此Treg-of-B(P)細胞的生理活性,我們將此調節細胞打入氣喘小鼠體內,發現不論在小鼠致敏前或致敏後打入細胞,都可以有效的抑制第二型T細胞激素產生,嗜伊紅性細胞浸潤,及緩解呼吸道阻力的症狀。
總合上述的發現,本篇研究證明在腸胃道的B細胞具有生成調節性T細胞的能力,並且藉此參與構成口服耐受性特性的過程,進而緩解氣喘疾病的症狀。
zh_TW
dc.description.abstractAsthma is one of the most common chronic airway inflammatory diseases. Induction of immunologic tolerance via mucosa has been used for treating allergic diseases. B cells, the major cell population in Peyer’s patches, have been shown to induce the development of Treg cells. This study aimed to investigate the role of B cells in Peyer’s patches to tolerance induction and on Treg cell functions. In vitro suppressive assay and ELISA were used to evaluate the function of T cells stimulated by Peyer’s patches B cells (Treg-of-B(P) cells). The therapeutic potential of Treg-of-B(P) cells on ovalbumin (OVA)-induced murine asthma is evaluated by measuring OVA-specific IgE, Th2 cytokine production, eosinophilia in Bronchoalveolar lavage fluid (BALF) and histopathological analysis.
First, we demonstrated that oral fed mice with OVA 0.5 mg for five days could diminish Th2 responses in BALF. High dose antigen administration (20mg) results in decreased CD4 T cell number, in contrast, low dose antigen helped Foxp3+ or IL-10 producing T cells induction. In vitro assay showed that Treg-of-B cells were found to exert suppressive function on T cell proliferation. Antigen-loaded B cells isolated from Peyer’s patches were more tolerogenic, compared with splenic B cells, and had the potential to generate more suppressive Treg-of-B cells via IL-10 production and cell-cell contract. Treg-of-B cells expressed CTLA4, ICOS, OX40, PD-1, and TNFRII and produced lower IL-2 and higher IL-10. Blocking experiment shows that IL-10, GITR and PD-1 mediate the suppressive effect of Treg-of-B(P) cells. Furthermore, we identify that FOB and MZB cells are capable of Treg cells generation. In addition, Peyer’s patches B cells are much better than Peyer’s patches DCs on generating Treg cells. In the murine model of asthma, an adoptive transfer of Treg-of-B(P) cells pre- or post- immunization could sufficiently suppress Th2 cytokine production and eosinophil infiltration, and alleviate asthmatic symptoms.
B cells isolated from gut-associated lymphoid tissues, GALT, can generate regulatory T cells that may be important in oral tolerance and be applicable for alleviating allergic symptoms.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:23:51Z (GMT). No. of bitstreams: 1
ntu-101-D94449001-1.pdf: 20114410 bytes, checksum: 137621afc659a942c136123dcf3919f1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsABSTRACT i
ABSTRACT IN CHINESE iii
CONTENTS v
LIST OF FIGURES viii
GENERAL INTRODUCTION 1
Asthma 2
Regulatory T cells and tolerance 2
Naturally occurring Treg cells 4
Inducible regulatory T cells 5
Treg cells and asthma 6
CHAPTER I. Introduction 9
1.1 History of mucosal tolerance 10
1.2 The mechanism of mucosal tolerance 11
1.2.1 The conformation and dose of antigen 11
1.2.2 Cytokine profile in mucosal tolerance 13
1.2.3 Mucosal lymph nodes 14
1.2.4 Regulatory T cells 16
1.2.5 The relation of antigen presenting cells in mucosal tolerance 17
1.2.5.1 Dendritic cells 17
1.2.5.2 Epithelial cells 19
1.2.5.3 Macrophages 20
1.2.5.4 B cells 20
1.3 Specific aims 23
CHAPTER II. Materials and Methods 25
2.1 Animals 26
2.2 Immunization and oral administration of OVA 26
2.3 Bronchoalveolar lavage (BAL) fluid study 27
2.4 Histopathological study 27
2.5 Determination of cytokine levels 27
2.6 Fluorescence-activated cell sorting (FACS) analysis 28
2.7 Characterization of the Treg cell population 29
2.8 Antigen-specific suppression of Treg cells from MLN and spleen 29
2.9 IgA detection 30
2.10 Treg-of-B cells preparation 31
2.11 Cultured supernatants of Treg-of-B cells, nTreg cells and total splenocytes 33
2.12 Real-time PCR 33
2.13 Treg cells generated by Peyer’s patches DCs and bone marrow derived DC 34
2.14 Adoptive transfer and flow cytometric determination of in vivo distribution of Treg-of-B cells 35
2.15 The protocol of Treg-of-B cell adoptive transfer in asthma model 35
2.16 OVA-specific IgG2a and IgE detection 36
2.17 Measurement of airway hyperresponsiveness 37
2.18 Splenocytes proliferation 37
2.19 Statistical analysis 37
CHAPTER III. Results 39
3.1 Oral tolerance could alleviate Th2 responses and cell infiltration in lung 40
3.2 Low dose of antigen could induce Treg cells in oral tolerance 40
3.3 T cells isolated from orally administrated mice exerted better suppressive function 41
3.4 OVA-specific IgA is increased in intestinal lavage in oral feeding group 42
3.5 B cells from Peyer’s patches show tolerogenic phenotypes 42
3.6 The suppressive function of Treg cells generated by B cells isolated from Peyer’s patches is better than B cells from spleen in inducing Treg cells 42
3.7 Peyer’s patches B cells from oral feeding mice are more potent to generate Treg cells 43
3.8 B cells generated Treg-of-B cells through IL-10 production and cell-cell contact 44
3.9 Cytokine production and cell marker expression in T cells activated by B cells 44
3.10 The mediators involved in Treg-of-B (P) and Treg-of-B (S) are different 45
3.11 Gene expressions by Treg-of-B cells 46
3.12 Different APCs generate Treg cells with different suppressive ability 46
3.13 The expression of CCR6 on naïve T cells, nTreg cells, and Treg-of-B cells 47
3.14 Adoptive transfer of Treg-of-B cells alleviated asthma symptoms 48
CHAPTER IV. Discussion 51
CHAPTER V. Conclusions and Perspective 63
Figures.. 67
Reference.. 107
Appendix.. 119
dc.language.isoen
dc.subject呼吸道阻力zh_TW
dc.subject黏膜耐受性zh_TW
dc.subject皮耶氏體zh_TW
dc.subjectB細胞zh_TW
dc.subject氣喘zh_TW
dc.subject調節性T細胞zh_TW
dc.subjectregulatory T cellsen
dc.subjectairway hyperresponsivenessen
dc.subjectasthmaen
dc.subjectmucosal toleranceen
dc.subjectB cellsen
dc.subjectPeyer’s patchesen
dc.title黏膜B細胞誘發調節性T細胞緩解過敏性呼吸道發炎之研究zh_TW
dc.titleRegulatory T Cells Induced by Mucosal B Cells Alleviate Allergic Airway Hypersensitivityen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴明宗,林俊彥,黃景泰,顧家綺
dc.subject.keyword黏膜耐受性,皮耶氏體,B細胞,氣喘,調節性T細胞,呼吸道阻力,zh_TW
dc.subject.keywordmucosal tolerance,Peyer’s patches,B cells,asthma,regulatory T cells,airway hyperresponsiveness,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2012-05-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
19.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved