請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬 | |
| dc.contributor.author | Sheng-Chueh Tsai | en |
| dc.contributor.author | 蔡聖爵 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:23:46Z | - |
| dc.date.available | 2013-06-27 | |
| dc.date.copyright | 2012-06-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2012-05-18 | |
| dc.identifier.citation | 1. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
2. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6. 3. Kim, V.N., MicroRNA biogenesis: coordinated cropping and dicing. 2005. 4. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11. 5. Rana, T.M., Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol, 2007. 8(1): p. 23-36. 6. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69. 7. Cho, W.C., OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer, 2007. 6: p. 60. 8. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004. 9. Calin, G.A. and C.M. Croce, MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene, 2006. 25(46): p. 6202-10. 10. Cimmino, A., et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13944-9. 11. Tian, Y., et al., MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem, 2010. 285(11): p. 7986-94. 12. Testa, J.R. and P.N. Tsichlis, AKT signaling in normal and malignant cells. Oncogene, 2005. 24(50): p. 7391-3. 13. Mayo, L.D. and D.B. Donner, A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11598-603. 14. Zhou, B.P., et al., HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol, 2001. 3(11): p. 973-82. 15. Datta, S.R., et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997. 91(2): p. 231-41. 16. Romashkova, J.A. and S.S. Makarov, NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 1999. 401(6748): p. 86-90. 17. Ozes, O.N., et al., NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999. 401(6748): p. 82-5. 18. Luo, J., B.D. Manning, and L.C. Cantley, Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell, 2003. 4(4): p. 257-62. 19. Zhang, Y., et al., Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev, 1999. 13(15): p. 1924-35. 20. Luo, J., et al., Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 2000. 408(6810): p. 377-81. 21. Ito, A., et al., MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J, 2002. 21(22): p. 6236-45. 22. Ji, Y., et al., Expression of MTA2 gene in ovarian epithelial cancer and its clinical implication. J Huazhong Univ Sci Technolog Med Sci, 2006. 26(3): p. 359-62. 23. Cui, Y., et al., Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Mol Endocrinol, 2006. 20(9): p. 2020-35. 24. Fu, J., et al., The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res, 2011. 21(2): p. 275-89. 25. Rajewsky, N., microRNA target predictions in animals. Nat Genet, 2006. 38 Suppl: p. S8-13. 26. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20. 27. de Vries, A., et al., Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci U S A, 2002. 99(5): p. 2948-53. 28. Miao, B., et al., Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A, 2010. 107(46): p. 20126-31. 29. Wilder, P.J., et al., Isolation and characterization of the murine transforming growth factor-beta2 promoter. Gene, 2001. 270(1-2): p. 201-9. 30. Ogawara, Y., et al., Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem, 2002. 277(24): p. 21843-50. 31. Skeen, J.E., et al., Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell, 2006. 10(4): p. 269-80. 32. Scheidenhelm, D.K., et al., Akt-dependent cell size regulation by the adhesion molecule on glia occurs independently of phosphatidylinositol 3-kinase and Rheb signaling. Mol Cell Biol, 2005. 25(8): p. 3151-62. 33. Kim, D., et al., Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. Faseb Journal, 2001. 15(11): p. 1953-62. 34. Morisco, C., et al., The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem, 2000. 275(19): p. 14466-75. 35. Shiojima, I. and K. Walsh, Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res, 2002. 90(12): p. 1243-50. 36. Hannigan, G.E., et al., Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature, 1996. 379(6560): p. 91-6. 37. Li, F., et al., Identification and characterization of a mouse protein kinase that is highly homologous to human integrin-linked kinase. Biochim Biophys Acta, 1997. 1358(3): p. 215-20. 38. Delcommenne, M., et al., Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A, 1998. 95(19): p. 11211-6. 39. Matsui, Y., et al., The importance of integrin-linked kinase in the regulation of bladder cancer invasion. Int J Cancer, 2011. 40. Doble, B.W. and J.R. Woodgett, GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci, 2003. 116(Pt 7): p. 1175-86. 41. Wang, Z., et al., Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature, 2008. 455(7217): p. 1205-9. 42. Lepley, D.M. and J.C. Pelling, Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog, 1997. 19(2): p. 74-82. 43. Minisini, M.P., S. Kantengwa, and B.S. Polla, DNA damage and stress protein synthesis induced by oxidative stress proceed independently in the human premonocytic line U937. Mutat Res, 1994. 315(2): p. 169-79. 44. Fang, J., et al., Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer, 2004. 109(1): p. 1-8. 45. Ryter, S.W. and L.E. Otterbein, Carbon monoxide in biology and medicine. Bioessays, 2004. 26(3): p. 270-80. 46. Salinas, M., et al., Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett, 2004. 578(1-2): p. 90-4. 47. Rostovtseva, T.K., W. Tan, and M. Colombini, On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr, 2005. 37(3): p. 129-42. 48. Yang, F.C., et al., Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity, 2000. 12(5): p. 557-68. 49. Yin, S., et al., Bcl-xL is a dominant antiapoptotic protein that inhibits homoharringtonine-induced apoptosis in leukemia cells. Mol Pharmacol, 2011. 79(6): p. 1072-83. 50. Khera, T.K., A.D. Dick, and L.B. Nicholson, Fragile X-related protein FXR1 controls post-transcriptional suppression of lipopolysaccharide-induced tumour necrosis factor-alpha production by transforming growth factor-beta1. FEBS J, 2010. 277(13): p. 2754-65. 51. Lin, M.T., et al., Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res, 2005. 11(16): p. 5809-20. 52. Chen, Y., et al., Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg, 2010. 14(7): p. 1170-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66155 | - |
| dc.description.abstract | 微型核醣核酸是一種長約22鹼基的小片段內生型核醣核酸,其本身不會轉譯出蛋白質,但可藉由直接結合標靶訊息核醣核酸 (mRNA)的 3’-非轉譯區 (3‘UTR),抑制蛋白質的轉譯或是造成mRNA的降解,進而負調控基因的表現。近年來發現微型核醣核酸不只對生物的發育有重要的影響,同時在基因表現的平衡中扮演重要的角色。最近的研究更指出微型核醣核酸對於癌症的發生、發展與遷移能力有密切的關係。我們將微型核醣核酸-148a (miR-148a)轉染至胃癌細胞株AGS並觀察其生長狀態以及細胞遷移能力的表現,結果顯示有轉染miR-148a的細胞其生長有明顯的減緩,遷移能力也相對低於對照組。進一步使用同位素標記絕對與相對定量 (iTRAQ)、網路分析軟體 (Ingenuity Pathway Analysis)、網路預測微型核醣核酸標靶基因軟體 (Targetscan 5.1)以及蛋白質網路建構資料庫STRING 8.3分析miR-148a對AGS細胞蛋白質層次的調控,並建構出可能的調控網路。結果發現,有四個受到負調控的蛋白質參與在AKT訊息傳遞路徑上。另外有一個預測為標靶基因的蛋白質FXR1其蛋白質表現量下降。根據前人的研究報導指出, FXR1表現量下降可導致TNF-α表現量上升,使得TNF-α促進細胞凋亡(apoptosis)。根據我們的實驗結果與建構之蛋白質調控網路認為,miR-148a可能主要透過抑制AKT訊息傳遞路徑上的蛋白質表現,而降低細胞的存活能力,另外也可能直接抑制FXR1的表現進而促進細胞的死亡。
另外,本實驗室以SAM分析GEO上胃癌組織與正常胃部細胞的資料,發現MTA2的RNA在胃癌組織中的表現為正常細胞中的3.67倍。實驗結果顯示TSGH細胞株內生miR-148a的量是AGS細胞株的2.91倍,大量轉染miR-148a入TSGH細胞株會導致MTA2的RNA表現量下降約20%,但是在冷光酶活性測定分析結果表示,MTA2並非miR-148a的標靶基因,最後以西方墨點法測得MTA2蛋白質表現量顯示下降了0.93倍。此實驗結果顯示,MTA2受到miR-148a的表現在RNA以及蛋白質層次上受到抑制,可能進而導致TSGH細胞的生長以及遷移能力。 | zh_TW |
| dc.description.abstract | MicroRNAs (miRNAs) are endogenous small non-coding RNA about 22 nucleotides in length. They can directly bind to target genes, causing down-regulation of their expression post-transcriptionally by suppressing protein translation or degrading mRNA. In this study, we found a tumor suppressor miRNA, miR-148a, could decrease cell growth and metastasis of gastric cancer cells. To further understand the regulatory mechanism of miR-148a in tumor progression of gastric cancer, we used isobaric tags for relative and absolute quantitation (iTRAQ) method to identify differentially expressed proteins in miR-148a-over-expressed AGS cells and construct miR-148a-regulated network. We further analyzed the enriched functions within its network using Ingenuity Pathway Analysis (IPA), STRING 8.3 and TargetScan 5.1 database. Our results revealed that the most enriched biological process was AKT signaling, known as a cell survival-related pathway. We also identified many down-regulated proteins involved in AKT signaling, including Bcl-2-like 1 protein (BCL2L1), Heme oxygenase-1(HMOX1), Integring-linked kinase (ILK) and Glycogen synthase kinase-3 alpha (GSK3A), based on iTRAQ analysis. On the other hand, we identified a predicted target of miR-148a, Fragile X-related protein (FXR1), was down-regulated in miR-148a over-expressed tumor cells. Study reports that down-regulates FXR1 could increase TNFα expression, and cause apoptosis through TNFα. Taken together, these results suggest that miR-148a may suppress cell survival through regulating FXR1-AKT network.
We analyzed microarray data from GEO by using SAM. The RNA expression of MTA2 in tumor tissue is 3.67 times higher than normal tissue. Furthermore, the endogenesis RNA expression of miR-148a in TSGH is 2.91 times higher than in AGS. As we transfect miR-148a precursor into TSGH, the RNA expression of MTA2 is downregulated up to 20%, but luciferase assay data revealed that MTA2 RNA is not the direct target of miR-148a. For further examination, the protein level of MTA2 is decreased 0.93 times under overexpression of miR-148a. MiR-148a might effect the expression of MTA2 in RNA and protein level, and regulate growth and migration ability of TSGH. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:23:46Z (GMT). No. of bitstreams: 1 ntu-100-R98b43032-1.pdf: 1596407 bytes, checksum: 6851c5aac74946af966e6a16af674cd0 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 ............................................................................................................................... i
中文摘要 .....................................................................................................................iii Abstract ....................................................................................................................... iv 第一章 前言與背景介紹 ........................................................................................... 1 1-1 微型核醣核酸 (miRNA) .................................................................................. 1 1-1-1 微型核醣核酸 (miRNA)的介紹 ............................................................... 1 1-1-2 微型核醣核酸與小型干擾核醣核酸 (small interfering RNA, siRNA)的差異 ............................................................................................................. 2 1-1-3 微型核醣核酸在癌症的角色 .................................................................... 2 1-2 胃癌(Gastric cancer)簡介 ................................................................................ 3 1-3 AKT 訊息傳遞路徑介紹 ................................................................................ 4 1-4 IPA (Ingenuity Pathway Analysis)的介紹........................................................ 4 1-5 STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)的介紹 5 1-6 DAVID (Database of Annotation, Visualization and Integrated Discovery)...... 5 1-7 MTA2 (Metastasis associated family 1, member 2)的介紹 .............................. 6 第二章 實驗材料與方法 ............................................................................................. 7 2-1 STRING的操作 ................................................................................................ 7 2-2 DAVID的操作 ................................................................................................. 7 2-3 細胞培養 ........................................................................................................... 8 2-3-1 解凍增殖 ................................................................................................. 8 2-3-2 細胞繼代 ................................................................................................. 8 2-3-3 細胞計數 ................................................................................................. 9 2-4 轉染作用 ........................................................................................................... 9 2-5 細胞總核醣核酸萃取 ..................................................................................... 10 2-6 反轉錄總量RNA反應( Total RNA Reverse transcription) ............................. 10 2-7 反轉錄微型核醣核酸反應(miRNA Reverse Transcription) ............................ 11 2-8 SYBG即時定量聚合酶連鎖反應轉 (Real-time PCR) ................................... 12 2-9 Taqman即時定量聚合酶連鎖反應轉 (Real-time PCR)................................. 13 2-10 pMIR-REPORT-MTA2 3‘UTR expression vector質體構築 ......................... 13 2-10-1 聚合酶連鎖反應 (Polymerase Chain reaction, PCR) .......................... 13 2-10-2 2%洋菜膠體製備與電泳分析 ............................................................. 14 2-10-3 膠體萃取DNA (Bioman EasyPrue PCR/Gel Extraction kit) .......... 15 2-10-4 DNA限制酶反應 ................................................................................ 15 2-10-5 接合作用 (Ligation)............................................................................ 16 2-10-6 轉型作用與藍白篩選 .......................................................................... 16 2-11 冷光酶活性測定分析 (Luciferase reporter assay) ........................................ 17 2-11-1 轉染作用 ............................................................................................... 17 2-11-2 Luciferase與 β-galactosidase 訊號偵測 .............................................. 17 2-12 Bradford 蛋白質定量 ................................................................................... 18 2-13 西方墨點法 (Western Blot) .......................................................................... 19 第三章 結果與討論 ................................................................................................. 21 3-1 以IPA和DAVID分析iTRAQ的結果 ......................................................... 21 3-2 以STRING建構PTEN和AKT與受miR-148a負調控之蛋白質間的網路 22 3-3 AKT訊息傳遞路徑與iTRAQ結果之間的關係 ............................................ 22 3-4 ILK與AKT之間的關係及其對細胞遷移之影響 ......................................... 23 3-5 GSK3-α對細胞生長之影響 ........................................................................... 24 3-6 HMOX1與AKT之間的關係及其對細胞 ..................................................... 24 3-7 BCL2L1與AKT之間的關係及其對細胞 ..................................................... 25 3-8 比對Targetscan以及miRanda預測之miR-148a標靶基因與iTRAQ結果 . 26 3-9 FXR1被預測為miR-148a的標靶基因 .......................................................... 26 3-10 討論以DAVID分析Targetscan預測基因與IPA分析的iTRAQ結果之間的異同 ............................................................................................................ 27 3-11 MTA2可能影響癌細胞的生長與遷移作用 ................................................. 27 3-12 以real-time PCR確認miR-148a在胃癌細胞TSGH與AGS中的含量 ..... 28 3-13 以real-time PCR確認轉染miR-148a的效率 .............................................. 28 3-14 以real-time PCR確認轉染miR-148a後MTA2 RNA量的改變 ................. 29 3-15 以Luciferase Assay確認MTA2的3‘UTR是否為miR-148a的直接目標 . 29 3-16 以西方墨點法確認miR-148a是否影響MTA2在TSGH中的表現 ........... 30 第四章 結論 ............................................................................................................ 32 第五章 圖 ................................................................................................................ 33 第六章 表 ................................................................................................................ 44 參考文獻 .................................................................................................................... 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | MTA2 | zh_TW |
| dc.subject | 微型核醣核酸 | zh_TW |
| dc.subject | 胃癌 | zh_TW |
| dc.subject | iTRAQ | zh_TW |
| dc.subject | IPA | zh_TW |
| dc.subject | PI3K/AKT訊息傳遞路徑 | zh_TW |
| dc.subject | gastric cancer | en |
| dc.subject | PI3K/AKT signaling | en |
| dc.subject | IPA | en |
| dc.subject | iTRAQ | en |
| dc.subject | miRNA | en |
| dc.title | 探討微型核醣核酸miR-148a於胃癌細胞的蛋白質調控網路 | zh_TW |
| dc.title | MiR-148a-regulated Protein Networks in Human
Gastric Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃宣誠,徐駿森 | |
| dc.subject.keyword | 微型核醣核酸,胃癌,iTRAQ,IPA,PI3K/AKT訊息傳遞路徑,MTA2, | zh_TW |
| dc.subject.keyword | miRNA,gastric cancer,iTRAQ,IPA,PI3K/AKT signaling, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-05-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
