Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷禎
dc.contributor.authorCHUNG-CHING HSIAOen
dc.contributor.author蕭崇景zh_TW
dc.date.accessioned2021-06-17T00:22:39Z-
dc.date.available2017-06-29
dc.date.copyright2012-06-29
dc.date.issued2010
dc.date.submitted2012-06-07
dc.identifier.citationAllen, D. G., Whitehead, N. P. and Yeung, E. W. (2005). Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567, 723-35.
Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T. and Jewell, D. (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13, 807-18.
Barbato, C., Arisi, I., Frizzo, M. E., Brandi, R., Da Sacco, L. and Masotti, A. (2009). Computational challenges in miRNA target predictions: to be or not to be a true target? J Biomed Biotechnol 2009, 803069.
Barik, S. (2008). An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res 36, 5232-41.
Bartel, D. P. and Chen, C. Z. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5, 396-400.
Baskerville, S. and Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-7.
Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P. and Izaurralde, E. (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20, 1885-98.
Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., Mills, A. A., Elledge, S. J., Anderson, K. V. and Hannon, G. J. (2003). Dicer is essential for mouse development. Nat Genet 35, 215-7.
Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. and Filipowicz, W. (2006). Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol 71, 513-21.
Borchert, G. M., Lanier, W. and Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13, 1097-101.
Brennecke, J., Stark, A., Russell, R. B. and Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biol 3, e85.
Brown, J. W., Marshall, D. F. and Echeverria, M. (2008). Intronic noncoding RNAs and splicing. Trends Plant Sci 13, 335-42.
Bryson-Richardson, R. J. and Currie, P. D. (2008). The genetics of vertebrate myogenesis. Nat Rev Genet 9, 632-46.
Buckingham, M. (2001). Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11, 440-8.
Chan, S. P. and Slack, F. J. (2007). And now introducing mammalian mirtrons. Dev Cell 13, 605-7.
Chen, C. Y., Zheng, D., Xia, Z. and Shyu, A. B. (2009). Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 16, 1160-6.
Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L. and Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38, 228-33.
Chen, Y. H., Lee, H. C., Liu, C. F., Lin, C. Y. and Tsai, H. J. (2003). Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5. Dev Dyn 228, 41-50.
Chin, E. R. (2005). Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99, 414-23.
Chin, E. R. and Allen, D. G. (1996). The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. J Physiol 491 ( Pt 3), 813-24.
Chin, E. R., Olson, E. N., Richardson, J. A., Yang, Q., Humphries, C., Shelton, J. M., Wu, H., Zhu, W., Bassel-Duby, R. and Williams, R. S. (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12, 2499-509.
Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M. et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102, 13944-9.
Corcoran, D. L., Pandit, K. V., Gordon, B., Bhattacharjee, A., Kaminski, N. and Benos, P. V. (2009). Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4, e5279.
Diagana, T. T., Thomas, U., Prokopenko, S. N., Xiao, B., Worley, P. F. and Thomas, J. B. (2002). Mutation of Drosophila homer disrupts control of locomotor activity and behavioral plasticity. J Neurosci 22, 428-36.
Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C. and Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biol 5, R1.
Esquela-Kerscher, A. and Slack, F. J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-69.
Filipowicz, W., Bhattacharyya, S. N. and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9, 102-14.
Filipowicz, W. and Pogacic, V. (2002). Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14, 319-27.
Fluck, M., Waxham, M. N., Hamilton, M. T. and Booth, F. W. (2000a). Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88, 352-8.
Fluck, M., Booth, F. W. and Waxham, M. N. (2000b). Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Biochem Biophys Res Commun 270, 488-94.
Flynt, A. S., Li, N., Thatcher, E. J., Solnica-Krezel, L. and Patton, J. G. (2007). Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 39, 259-63.
Foa, L., Jensen, K., Rajan, I., Bronson, K., Gasperini, R., Worley, P. F., Tu, J. C. and Cline, H. T. (2005). Homer expression in the Xenopus tadpole nervous system. J Comp Neurol 487, 42-53.
Freyssenet, D., Di Carlo, M. and Hood, D. A. (1999). Calcium-dependent regulation of cytochrome c gene expression in skeletal muscle cells. Identification of a protein kinase c-dependent pathway. J Biol Chem 274, 9305-11.
Friday, B. B., Horsley, V. and Pavlath, G. K. (2000). Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149, 657-66.
Gasperini, R. and Foa, L. (2004). Homer 1b/c expression correlates with zebrafish olfactory system development. J Neurocytol 33, 671-80.
Gebauer, F. and Hentze, M. W. (2004). Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5, 827-35.
Gennarino, V. A., Sardiello, M., Avellino, R., Meola, N., Maselli, V., Anand, S., Cutillo, L., Ballabio, A. and Banfi, S. (2009). MicroRNA target prediction by expression analysis of host genes. Genome Res 19, 481-90.
Ghildiyal, M. and Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nat Rev Genet 10, 94-108.
Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., Hammond, S. M., Bartel, D. P. and Schier, A. F. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833-8.
Griffiths-Jones, S., Saini, H. K., van Dongen, S. and Enright, A. J. (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res 36, D154-8.
Hadchouel, J., Carvajal, J. J., Daubas, P., Bajard, L., Chang, T., Rocancourt, D., Cox, D., Summerbell, D., Tajbakhsh, S., Rigby, P. W. et al. (2003). Analysis of a key regulatory region upstream of the Myf5 gene reveals multiple phases of myogenesis, orchestrated at each site by a combination of elements dispersed throughout the locus. Development 130, 3415-26.
Hayashi, M. K., Ames, H. M. and Hayashi, Y. (2006). Tetrameric hub structure of postsynaptic scaffolding protein homer. J Neurosci 26, 8492-501.
Hennig, R. and Lomo, T. (1985). Firing patterns of motor units in normal rats. Nature 314, 164-6.
Hsu, P. W., Huang, H. D., Hsu, S. D., Lin, L. Z., Tsou, A. P., Tseng, C. P., Stadler, P. F., Washietl, S. and Hofacker, I. L. (2006). miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34, D135-9.
Hsu, R. J., Lin, C. Y., Hoi, H. S., Zheng, S. K., Lin, C. C. and Tsai, H. J. (2010). Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Res.1–10. doi:10.1093/nar/gkq148.
Hsu, R. J., Yang, H. J. and Tsai, H. J. (2009). Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res 37, e77.
Hudder, A. and Novak, R. F. (2008). miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci 103, 228-40.
Hutvagner, G. and Simard, M. J. (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9, 22-32.
Hwang, S. Y., Wei, J., Westhoff, J. H., Duncan, R. S., Ozawa, F., Volpe, P., Inokuchi, K. and Koulen, P. (2003). Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium 34, 177-84.
Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., Hsiao, E. C., Schwartz, R. J., Conklin, B. R., Bernstein, H. S. et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219-29.
Jin, P., Alisch, R. S. and Warren, S. T. (2004). RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6, 1048-53.
John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C. and Marks, D. S. (2004). Human MicroRNA targets. PLoS Biol 2, e363.
Jones-Rhoades, M. W., Bartel, D. P. and Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57, 19-53.
Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V. and Tajbakhsh, S. (2004). Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431, 466-71.
Khvorova, A., Reynolds, A. and Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-16.
Kim, H. K., Lee, Y. S., Sivaprasad, U., Malhotra, A. and Dutta, A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174, 677-87.
Kim, S., Hwang do, W. and Lee, D. S. (2009). A study of microRNAs in silico and in vivo: bioimaging of microRNA biogenesis and regulation. FEBS J 276, 2165-74.
Kim, V. N., Han, J. and Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-39.
Kim, Y. K. and Kim, V. N. (2007). Processing of intronic microRNAs. EMBO J 26, 775-83.
Kiriakidou, M., Tan, G. S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P. T. and Mourelatos, Z. (2007). An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141-51.
Knight, S. W. and Bass, B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269-71.
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853-8.
Lai, E. C. and Posakony, J. W. (1997). The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124, 4847-56.
Lai, E. C. and Posakony, J. W. (1998). Regulation of Drosophila neurogenesis by RNA:RNA duplexes? Cell 93, 1103-4.
Lau, N. C., Lim, L. P., Weinstein, E. G. and Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-62.
Lau, P. W. and MacRae, I. J. (2009). The molecular machines that mediate microRNA maturation. J Cell Mol Med 13, 54-60.
Lee, R. C. and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862-4.
Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-54.
Li, N., Flynt, A. S., Kim, H. R., Solnica-Krezel, L. and Patton, J. G. (2008). Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res 36, 4277-85.
Li, S. C., Pan, C. Y. and Lin, W. C. (2006). Bioinformatic discovery of microRNA precursors from human ESTs and introns. BMC Genomics 7, 164.
Li, S. C., Tang, P. and Lin, W. C. (2007). Intronic microRNA: discovery and biological implications. DNA Cell Biol 26, 195-207.
Lin, C. Y., Chen, Y. H., Lee, H. C. and Tsai, H. J. (2004). Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334, 63-72.
Lin, C. C. (2009). Dickkopf3 (Dkk3) regulated the expression of zebrafish myf5 promoter via phosphorylated p38a-dependent Smad4 stability. 國立台灣大學生命科學院分子與細胞生物學研究所碩士論文.
Lin, S. L., Chang, D. C., Chang-Lin, S., Lin, C. H., Wu, D. T., Chen, D. T. and Ying, S. Y. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14, 2115-24.
Liu, N., Williams, A. H., Kim, Y., McAnally, J., Bezprozvannaya, S., Sutherland, L. B., Richardson, J. A., Bassel-Duby, R. and Olson, E. N. (2007). An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 104, 20844-9.
Lucchiari, S., Pagliarani, S., Corti, S., Mancinelli, E., Servida, M., Fruguglietti, E., Sansone, V., Moggio, M., Bresolin, N., Comi, G. P. et al. (2008). Colocalization of ribonuclear inclusions with muscle blind like-proteins in a family with myotonic dystrophy type 2 associated with a short CCTG expansion. J Neurol Sci 275, 159-63.
McCarthy, J. J. (2008). MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779, 682-91.
Mendes, N. D., Freitas, A. T. and Sagot, M. F. (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37, 2419-33.
Mi, S., Lu, J., Sun, M., Li, Z., Zhang, H., Neilly, M. B., Wang, Y., Qian, Z., Jin, J., Zhang, Y. et al. (2007). MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 104, 19971-6.
Mishima, Y., Abreu-Goodger, C., Staton, A. A., Stahlhut, C., Shou, C., Cheng, C., Gerstein, M., Enright, A. J. and Giraldez, A. J. (2009). Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev 23, 619-32.
Missal, K., Zhu, X., Rose, D., Deng, W., Skogerbo, G., Chen, R. and Stadler, P. F. (2006). Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Exp Zool B Mol Dev Evol 306, 379-92.
Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. and Baulcombe, D. C. (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126-9.
Monteys, A. M., Spengler, R. M., Wan, J., Tecedor, L., Lennox, K. A., Xing, Y. and Davidson, B. L. (2010) Structure and activity of putative intronic miRNA promoters. RNA 16, 495-505.
Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Cuvellier, S. and Harel-Bellan, A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8, 278-84.
Najwer, I. and Lilly, B. (2005). Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. Am J Physiol Cell Physiol 289, C785-93.
Neilson, J. R. and Sharp, P. A. (2008). Small RNA regulators of gene expression. Cell 134, 899-902.
Nott, A., Meislin, S. H. and Moore, M. J. (2003). A quantitative analysis of intron effects on mammalian gene expression. RNA 9, 607-17.
Nottrott, S., Simard, M. J. and Richter, J. D. (2006). Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13, 1108-14.
Novitch, B. G., Mulligan, G. J., Jacks, T. and Lassar, A. B. (1996). Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 135, 441-56.
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. and Lai, E. C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89-100.
O'Rourke, J. R., Georges, S. A., Seay, H. R., Tapscott, S. J., McManus, M. T., Goldhamer, D. J., Swanson, M. S. and Harfe, B. D. (2007). Essential role for Dicer during skeletal muscle development. Dev Biol 311, 359-68.
Park, W., Li, J., Song, R., Messing, J. and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12, 1484-95.
Parker, R. and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121-7.
Pase, L., Layton, J. E., Kloosterman, W. P., Carradice, D., Waterhouse, P. M. and Lieschke, G. J. (2009). miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113, 1794-804.
Petersen, C. P., Bordeleau, M. E., Pelletier, J. and Sharp, P. A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21, 533-42.
Pillai, R. S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753-61.
Pillai, R. S., Bhattacharyya, S. N. and Filipowicz, W. (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17, 118-26.
Preall, J. B. and Sontheimer, E. J. (2005). RNAi: RISC gets loaded. Cell 123, 543-5.
Puri, P. L., Iezzi, S., Stiegler, P., Chen, T. T., Schiltz, R. L., Muscat, G. E., Giordano, A., Kedes, L., Wang, J. Y. and Sartorelli, V. (2001). Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8, 885-97.
Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S. and Lodish, H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103, 8721-6.
Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R. and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-6.
Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902-10.
Rosenberg, M. I., Georges, S. A., Asawachaicharn, A., Analau, E. and Tapscott, S. J. (2006). MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175, 77-85.
Rothschild, S. C., Easley, C. A. t., Francescatto, L., Lister, J. A., Garrity, D. M. and Tombes, R. M. (2009). Tbx5-mediated expression of Ca(2+)/calmodulin-dependent protein kinase II is necessary for zebrafish cardiac and pectoral fin morphogenesis. Dev Biol 330, 175-84.
Rothschild, S. C., Lister, J. A. and Tombes, R. M. (2007). Differential expression of CaMK-II genes during early zebrafish embryogenesis. Dev Dyn 236, 295-305.
Ruby, J. G., Jan, C. H. and Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83-6.
Rudnicki, M. A., Schnegelsberg, P. N., Stead, R. H., Braun, T., Arnold, H. H. and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351-9.
Rusk, N. and Kiermer, V. (2008). Primer: Sequencing--the next generation. Nat Methods 5, 15.
Sala, C., Piech, V., Wilson, N. R., Passafaro, M., Liu, G. and Sheng, M. (2001). Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115-30.
Salanova, M., Priori, G., Barone, V., Intravaia, E., Flucher, B., Ciruela, F., McIlhinney, R. A., Parys, J. B., Mikoshiba, K. and Sorrentino, V. (2002). Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium 32, 193-200.
Sarnow, P., Cevallos, R. C. and Jan, E. (2005). Takeover of host ribosomes by divergent IRES elements. Biochem Soc Trans 33, 1479-82.
Schiaffino, S. (2010). Fibre types in skeletal muscle: a personal account. Acta Physiol (Oxf).
Shiraishi, Y., Mizutani, A., Bito, H., Fujisawa, K., Narumiya, S., Mikoshiba, K. and Furuichi, T. (1999). Cupidin, an isoform of Homer/Vesl, interacts with the actin cytoskeleton and activated rho family small GTPases and is expressed in developing mouse cerebellar granule cells. J Neurosci 19, 8389-400.
Shiraishi-Yamaguchi, Y. and Furuichi, T. (2007). The Homer family proteins. Genome Biol 8, 206.
Slack, G. S. a. F. J. (2008). Small non-coding RNAs in anomal development. Nature Review 9, 219-230.
Soderling, T. R., Chang, B. and Brickey, D. (2001). Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 276, 3719-22.
Stark, A., Brennecke, J., Russell, R. B. and Cohen, S. M. (2003). Identification of Drosophila MicroRNA targets. PLoS Biol 1, E60.
Stiber, J. A., Tabatabaei, N., Hawkins, A. F., Hawke, T., Worley, P. F., Williams, R. S. and Rosenberg, P. (2005). Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 287, 213-24.
Stiber, J. A., Zhang, Z. S., Burch, J., Eu, J. P., Zhang, S., Truskey, G. A., Seth, M., Yamaguchi, N., Meissner, G., Shah, R. et al. (2008). Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28, 2637-47.
Thisse, C. and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69.
Tu, J. C., Xiao, B., Yuan, J. P., Lanahan, A. A., Leoffert, K., Li, M., Linden, D. J. and Worley, P. F. (1998). Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717-26.
van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J. and Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575-9.
Vasudevan, S., Tong, Y. and Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931-4.
Wang, D., Lu, M., Miao, J., Li, T., Wang, E. and Cui, Q. (2009). Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes. PLoS One 4, e4421.
Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., Cheng, A., Hall, B. M., Qualman, S. J., Chandler, D. S. et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14, 369-81.
Ward, C. W., Feng, W., Tu, J., Pessah, I. N., Worley, P. K. and Schneider, M. F. (2004). Homer protein increases activation of Ca2+ sparks in permeabilized skeletal muscle. J Biol Chem 279, 5781-7.
Washietl, S., Hofacker, I. L., Lukasser, M., Huttenhofer, A. and Stadler, P. F. (2005). Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23, 1383-90.
Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E. and Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35, 217-8.
Wightman, B., Ha, I. and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-62.
Williams, A. H., Liu, N., van Rooij, E. and Olson, E. N. (2009a). MicroRNA control of muscle development and disease. Curr Opin Cell Biol 21, 461-9.
Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., Bassel-Duby, R., Sanes, J. R. and Olson, E. N. (2009b). MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549-54.
Wilusz, C. J., Wormington, M. and Peltz, S. W. (2001). The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2, 237-46.
Wu, H., Naya, F. J., McKinsey, T. A., Mercer, B., Shelton, J. M., Chin, E. R., Simard, A. R., Michel, R. N., Bassel-Duby, R., Olson, E. N. et al. (2000). MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19, 1963-73.
Xiao, B., Tu, J. C., Petralia, R. S., Yuan, J. P., Doan, A., Breder, C. D., Ruggiero, A., Lanahan, A. A., Wenthold, R. J. and Worley, P. F. (1998). Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21, 707-16.
Xie, J., Jan, C., Stoilov, P., Park, J. and Black, D. L. (2005). A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons. RNA 11, 1825-34.
Yuan, J. P., Kiselyov, K., Shin, D. M., Chen, J., Shcheynikov, N., Kang, S. H., Dehoff, M. H., Schwarz, M. K., Seeburg, P. H., Muallem, S. et al. (2003). Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777-89.
Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., Wang, X. J. and Qi, Y. (2007a). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21, 1190-203.
Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., Tsuchihashi, T., McManus, M. T., Schwartz, R. J. and Srivastava, D. (2007b). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303-17.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66124-
dc.description.abstractmicroRNA-In300為一種intronic microRNA (miRNA),其位於斑馬魚肌肉專一表現基因myf5 intron-1序列中,且在斑馬魚胚胎myf5 mRNA表現開始消退時期,miR-In300仍可持續在腦部以及肌肉組織中被偵測到其表現。因此,我們欲探討在myf5不表現時期,miR-In300是否仍具有經由調控標的基因表現,而影響斑馬魚胚胎肌肉發育之功能。首先,我們選擇myf5表現消退時期32 hpf之斑馬魚胚胎進行Labeled microRNA pull-down assay system,並配合microarray分析,進而獲得斑馬魚miR-In300可能標的基因之資料庫,並篩選出會表現於斑馬魚胚胎軀幹部肌肉組織基因homer-1、col1a-2、trmt-2a、six-1b以及dnajc-10進行研究。接著,我們將上述五個miR-In300可能標的基因之3’-untranslated translated region(3’UTR)構築入報導基因luciferase(luc)下游,進行Dual-luciferase reporter system分析。綜合於HEK-293T細胞株以及斑馬魚胚胎之實驗結果顯示,在給予外源性miR-In300狀況下,miR-In300僅可透過homer-1 3’UTR序列抑制報導基因luc的表現。且在斑馬魚胚胎不外加miR-In300,僅具有內生性miR-In300情況下,報導基因luc表現即可受到抑制。若注射miR-In300 mopholino (MO)到斑馬魚胚胎以抑制內生性mature miR-In300之生成,報導基因luc表現量則會顯著增加。顯示,在斑馬魚胚胎中,隨著miR-In300表現量的改變,含有homer-1 3’UTR之報導基因luc表現程度也會隨之受到調控。進一步,在全胚胎原位雜合反應(whole mount in situ hybridization,WISH)以及western blot實驗中,我們可藉由抑制內生性miR-In300表現,發現homer-1 mRNA以及蛋白質表現量均較野生型(wild-type)斑馬魚胚胎增加。另一方面,我們利用WISH實驗顯示,miR-In300以及homer-1均可表現於軀幹部肌肉之快肌中,顯示兩者的表現區域具有同位性。而在斑馬魚胚胎進行miR-In300以及homer-1 MO注射實驗,在分別過量表現miR-In300以及抑制內生性Homer-1蛋白質的轉譯時,會造成斑馬魚胚胎體軸彎曲以及尾巴變短之相似缺失。並且,在斑馬魚胚胎共同注射homer-1 mRNA與miR-In300狀況下,則可降低miR-In300過量表現造成之缺失比例。由以上實驗結果顯示,homer-1為miR-In300的一個標的基因,且miR-In300可經由homer-1 3’UTR序列而抑制Homer-1蛋白質的產生,並影響斑馬魚之肌肉發育。zh_TW
dc.description.abstractmicroRNA miR-In300 is an intronic miRNA which is located within the first intron (intron-1) of the zebrafish myogenic factor 5 (myf5) gene. When the transcription of myf5 is decreased in 32 hours post-fertilization (32 hpf), miR-In300 is still detectable in brain and muscle until 7 days post-fertilization. We suspeat whether the remnant miR-In300 is able to regulate gene expression and to affect zebrafish myogenesis. To address this issue, we choose the 32 hpf zebrafish embryos to perform Labeled microRNA pull-down assay system and microarray analysis to obtain candidates of miR-In300 target genes. And then, we constructed the 3’-untranslated translated region (3’ UTR) of trunk muscle-expressed candidates, including homer-1、col1a-2、trmt-2a、six-1b and dnajc-10, into a vector to create a fusion to the luciferase reporter gene (luc). Amoung the five candidates, by using of dual-luciferase reporter system, we found that only homer1 3’UTR could be bound by exogenous miR-In300, so that inhibiting luc expression in HEK-293T cell line and zebrafish embryo. The luc expression would be effectively by the endogenous miR-In300. Moreover, miR-In300 mopholino (MO) was co-injected to block the dicing of mature miR-In300, the luc expression increased significantly. We demostrated that the expression of homer-1 3’UTR-fused luc gene incersely correlated with the miR-In300 content. Furthermore, by using whole mount in situ hybridization (WISH) and western blot, the inhibition of endogenous miR-In300 resulted in increasing of homer-1 mRNA and Homer-1 protein expression. Next, we observed that homer-1 and miR-In300 co-localized in fast muscle of zebrafish embryo by WISH. Besides, we observed that overexpression of miR-In300 could result in curved axis and short tail of zebrafish embryo. When we knock down of homer-1 expression by injection with homer-1 MO, the phenotype was similar to the embryos overexpressing miR-In300. And the miR-In300-induced defect could be partially rescued by co-injection of homer-1 mRNA. Taken together, we concluded that homer-1 is one of miR-In300 target genes, and miR-In300 could inhibit the protein synthesis of Homer-1 by binding to homer-1 3’UTR to affect zebrafish myogenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:22:39Z (GMT). No. of bitstreams: 1
ntu-99-R97b43011-1.pdf: 2357493 bytes, checksum: d24ac7d7451055226669c2408b5ca103 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 1
英文摘要 3
文獻回顧 5
前言 22
實驗材料與方法 25
結果 41
文獻回顧 58
圖說 72
附錄一: miR-In300可能標的基因 86
附錄二:Developmental stages in the zebrafish 94
dc.language.isozh-TW
dc.subject斑馬魚zh_TW
dc.subject肌肉zh_TW
dc.subjectzebrafishen
dc.subjectmyogenesisen
dc.titlemicroRNA-In300抑制其標的基因 homer-1 而影響斑馬魚胚胎肌肉發育之分子機制zh_TW
dc.titleThe Mechanism of microRNA -In300 regulates myogenesis through silencing the target gene homer-1 in zebrafish embryosen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳耀鴻,吳素幸,俞震亞
dc.subject.keyword斑馬魚,肌肉,zh_TW
dc.subject.keywordzebrafish,myogenesis,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2012-06-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved