Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許銘熙(Ming-Hsi Hsu)
dc.contributor.authorWei-Bo Chenen
dc.contributor.author陳偉柏zh_TW
dc.date.accessioned2021-06-17T00:21:39Z-
dc.date.available2014-06-29
dc.date.copyright2012-06-29
dc.date.issued2012
dc.date.submitted2012-06-15
dc.identifier.citationAllen, G.P., Salomon, J.C., Bassoullet, P., Penhoat, Y.D., Grandpre, C.D., 1980. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology 26 (1-3), 69-90.
Bilgili, A., Proehl, J.A., Lynch, D.R., Smith, K.W., Swift, M.R., 2005. Estuary/ocean exchange tidal mixing in a Gulf of Maine estuary: a Lagrangian modeling study. Estuarine, Coastal and Shelf Science 65 (4), 607–624
Blumberg, A. F., 1975. A numerical investigation into the dynamics of estuarine circulation. Chesapeake Bay Institute, Technical Report 91, The Johns Hopkins University, 59p.
Blumberg, A. F., 1976. A two-dimensional numerical model for the simulation of partially mixed estuaries. In: Estuarine Processes (Wiley M (ed.)). Academic Press, New York, NY, USA, pp. 323-331.
Blumberg, A. F., 1977. Numerical tidal model of Chesapeake Bay. Journal of the Hydraulic Division, ASCE, 103, 295-319.
Blumberg, A. F., 1978. The influence of density variations on estuarine tides and circulation. Estuarine and Coastal Marine Science, 6, 209-215.
Blumberg, A.F., 1986. Turbulent mixing processes in lakes, reservoirs and impoundments. In: Gray, W.G. (Ed.), Physical Based Modeling of Lakes, Reservoirs, and Impoundments. ASCE, New York, 79-104.
Blumberg, A.F., Dunning, D.J., Li, H.H., Heimbuch, D., Geyer, W.R., 2004. Use of a particle-tracking mode for predicting entrainment at power plants on the Hudson River. Estuaries 27 (3), 515-526.
Blumberg, A.F., Mellor, G.L., 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps, N. (Ed.), Three-Dimensional Coastal Ocean Models. In: Coastal and Estuarine Studies, vol. 4. AGU, Washington, DC, 1-16.
Boericke, R. R. and Hogan, J. M., 1977. An x-z hydraulic/thermal model for estuarine. Journal of the Hydraulic Division, Proceedings ASCE, 103(HY1), 19-37.
Burchard, H., Baumert, H., 1998. The formulation of estuarine turbidity maxima due to density effects in the salt wedge: a hydrodynamic process study. Journal of Physic Oceanography, 28 (2), 309-321.
Burchard, H., Bolding, K., Villarreal, M.R., 2004. Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dynamics, 54 (2), 250-265.
Byun, D.S., Wang, X.H., 2005. The effect of sediment stratification on tidal dynamics and sediment transport patterns. Journal Geophysical Research, 110, C03011.
Cancino, L., Neves, R. 1995. Three-dimensional model system for baroclinic estuarine dynamics and suspended sediment transport in a mesotidal estuary. In: Computer Modelling of Seas and Coastal Regions. Computational Mechanics Publication, 353-360.
Casulli, V., Cheng, R.T., 1992. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal for Numerical Methods in Fluids 15, 629-648.
Casulli, V., Walters, R. A. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. International Journal for Numerical Methods in Fluids 32(3), 331-348.
Casulli, V., Zanolli, P., 2005. High resolution methods for multidimensional advection-diffusion problems in free-surface hydrodynamics. Ocean Modell. 10, 137-151.
Chen, C, Beardsley, R. C. and Cowles, G., 2006. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Special Issue entitled “Advances in Computational Oceanography”, Oceanography, vol. 19, No. 1, 78-89.
Chen, C., Liu, H., Beardsley, R. C., 2003. An unstructured grid, finite volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1), 159-186.
Chen, C. S., Zhu, J., Kang, K. R., Li, H., Ralph, E., Green, S. A., et al., 2002. Cross-frontal transport along the Keweenaw coast in Lake Superior: A Langrangian model study. Dynamics of Atmospheres and Oceans, 36(1-3), 83-102.
Chen, X. J., 2007. A laterally averaged two-dimensional trajectory model for estimating transport time scale in the Alafia River estuary, Florida. Estuarine, Coastal and Shelf Science 75(3), 357-370.
Cheng, R.T., Burau, J.R., Gartner, J.W., 1991. Interfacing data analysis and numerical modelling for tidal hydrodynamic phenomena. In: Parker, B.B. (Ed.), Tidal Hydrodynamics. John Wiley & Sons, New York, 201-219.
Clarke, S., Elliott, A.J., 1998. Modelling suspended sediment concentrations in the Firth of Forth. Estuarine, Coastal and Shelf Science, 47 (3), 235-250.
Coraci, E., Umgiesser, G., Zonta, R., 2007. Hydrodynamic and sediment transport modelling in the canals of Venice (Italy). Estuarine, Coastal and Shelf Science, 75 (1-2), 250-260.
Deleersnijder, E., Campin, J. M., Delhez, E. J. M., 2001. The concept of age in marine modelling, I. Theory and preliminary model results. Journal of Marine Systems 28 (3-4), 229-267.
Delhez, E. J. M., Deleersnijder, E., 2006. The boundary layer of the residence time field. Ocean Dynamics 56, 139-150.
Delhez, E. J. M., Campin, J.M., Hirst, A.C., Deleersnijder, E., 1999. Toward a general theory of the age in ocean modelling. Ocean Modelling 1 (1), 17-27.
Department of Publics Sewerage Systems Report (2001). The environmental monitor program of the sewage outfall in the Danshuei River system during 1998 and 1999. Taiwan: Taipei City Council (in Chinese).
Dias, J.M., Sousa, M.C., Fortunato, A.B., Oliveira, A., 2009. Numerical modeling of the impact of the Ancao Inlet relocation (Ria Formosa, Portugal). Environmental Modelling & Software 24, 711-725.
Du, P. J. Ding, P. X., Hu, K. L., 2010. Simulation of three-dimensional cohesive sediment transport in Hangzhou Bay, China. Acta Oceanologica Sinica, 29 (2), 98-106.
Dyer, K. R., 1973. Estuaries: a physical introduction. Wiley & Sons, New York, USA.
Dyer, K. R., 1977. Lateral circulation effects in estuaries. In Estuaries, Geophysics and Environment, national Academic of Sciences, Washington.
DYER, K.R., 1977. The balance of suspended sediment in the Gironde and Thames estuaries. In: KJERFVE, B. (Ed.). Estuarine transport processes. Columbia: University of South Carolina Press, 135-145.
DYER, K. R., 1997. Estuaries: a physical introduction. 2nd ed. New York: John Wiley & Sons, 195p.
EISMA, D., 1986. Flocculation and de-flocculation of suspended matter in estuaries. Netherlands Journal of Sea Research, 20, 2-3, 183-199.
Elliott, A. J., 1976. A numerical model of the internal circulation in a branching estuary. Chesapeake Bay Institute, Special Report 54, The Johns Hopkins University, 85p.
Forstener, U. and Wittmann, G. T. W., 1983. Metal pollution in the aquatic environment. 2nd ed. New York: Springer, 486 p.
Ganju, N.K., Schoellhamer, D.H., 2009. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution. Continental Shelf Research, 29 (1), 148-158.
Gao, G., Falconer, R.A., Lin, B., 2011. Numerical modelling of sediment-bacteria interaction processes in surface waters. Water Research, 45 (5), 1951-1960.
Ge, J., Chen, C., Qi, J., Ding, P., and Beardsley, B. C., 2012. A dike–groyne algorithm in a terrain-following coordinate ocean model (FVCOM): Development, validation and application. Ocean Modelling, 47, 26-40.
Geyer, W.R., Hill, P.S., Kineke, G.C., 2004. The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research 24, 927-949.
Geyer, W.R., Signell, R., Kineke, G., 1998. Lateral trapping of sediment in a partially mixed estuaries. In: Dronkers, J., Scheffers, M. (Eds.), Physics of Estuaries and Coastal Seas: Proceedings of the 8th International Biennial Conference on Physics of Estuaries and Coastal Seas. A.A. Balkema, Rotterdam, The Netherlands, 115-124.
Geyer, W.R., Trowbridge, J.H., Bowen, M.M., 2000. The dynamics of a partially mixed estuary. Journal of Physical Oceanography 30, 2035-2048.
Gong, W., Shen, J., Hong, B., 2009. The influence of wind on the water age in the tidal Rappahannock River. Marine Environmental Research 68 (4), 203-216.
Gong, W, Shen, J., Cho, K., and Wang, H. V., 2009. A numerical model study of barotropic subtidal water exchange between estuary and subestuaries (tributaries) in the Chesapeake Bay during northeaster events. Ocean Modelling, 26, 170-189.
Gong, W. P., Shen, J., Jia, J. J., 2008. The impact of human activities on the flushing properties of a semienclosed lagoon: Xiaohai, Hainan, China. Marine Environmental Research, 65(1), 62-76.
Gregg, M.C. 1987. Diapycnal mixing in the thermocline: a review. Journal of Geophysical Research 92(C5): 5249-5286.
Guo,M. Q., and Jiang, Y. U., 2010. Distribution of Suspended Sediment and Erosion Simulation of the Jiulong River Estuary During a Flood Process . Xiamen Daxue Xuebao, 49 (5), 688-693.
Guo, W. J. and Wang, Y. X., 2009. A numerical oil spill model based on a hydrid method. Marine Pollution Bulletin, 58, 726-734.
Hamilton, P., 1975. A numerical model of the vertical circulation of tidal estuaries and its application to the Rotterdam waterway Geographical Journal of the Royal Astrological Society, 40, 1-21.
Horrevoets, A. C., H. H. G. Savenije, J. N. Schuurman, and S. Graas (2004), The influence of river discharge on tidal damping in alluvial estuaries, J. Hydrol., 294, 213-228.
Hsu, M.H., Fu, J.C., Liu, W.C., 2003. Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan. Journal of Hydrology. 283, 267-280.
Hsu, M. H., Kuo, A. Y., Kuo, J. T., Liu, W. C., 1999. Procedure to calibrate and verify numerical models of estuarine hydrodynamics. Journal of Hydraulic Engineering - ASCE 125 (2), 166-182.
Hsu, M.H., Wu, C.R., Liu, W.C., 2006. Investigate of turbidity maximum in a mesotidal estuary, Taiwan. Journal of the American Water Resources Association, 42 (4), 901-914.
Huang, W., Spaulding, M.L., 2002. Modelling residence-time response to freshwater input in Apalachicola Bay, Florida, USA. Hydrological Processes 16, 3051-3064.
Jan, S., Wang, Y.H., Chao, S.Y., Wang, D.Y., 2001. Development of a nowcast system for the Taiwan Strait (TSNOW): numerical simulation of barotropic tides. Ocean and Polar Research 23 (3), 195-203.
Jeng, W.L., Han, B.C., 1994. Sedimentary coprostanol in Kaohsiung harbor and the Tanshui Estuary, Taiwan. Marine Pollution Bulletin 28 (8), 494-499.
Ji, Z.G., Morton, M.R., Hamrick, J.M., 2001. Wetting and drying simulation of estuarine processes. Estuarine, Coastal and Shelf Science 53 (5), 683-700.
Jiang, W.S., Pohlmann, T., Sundermann, J., Feng, S., 2000. A modelling study of SPM transport in the Bohai sea. Journal of Marine Systems, 24 (3-4), 175-200.
Johnson, B. H., 1981. A review of numerical reservoir hydrodynamic modeling. U.S. Army Engr. Waterways Experiment Station, Vicksburg, Miss.
Kantha, L.H., Clayson, C.A., 1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99 (25), 235-266.
Kawanisi, K., Yokosi, S., 1997. Characteristics of susoended sediment and turbulence in a tidal boundary layer. Continental Shelf Research 17 (8), 859-875.
Kistner, D.A., Pettigrew, N.R., 2001. A variable turbidity maximum in the Kennebec estuary, Maine. Estuaries 24, 680-687.
Kjerfve, B., 1986. Circulation and salt flux in the well mixed estuary. In: Van der, Kreeke (Ed.), Physics of Shallow Estuaries and Bays. Springer-Verlag, Berlin, pp. 22-29.
Korotenko, K. A., Mamedov, R. M., Kontar, A. E., & Korotenko, L. A., 2004. Particle-tracking method in the approach for prediction of oil slick transport in the sea: Modelling oil pollution resulting from river input. Journal of Marine Systems, 48(1-4), 159-170.
Krone, R. B. 1962. Flume studies of the transport of sediment in estuarial shoaling processes, finial report. Hydraulic Engineering and Sanitary Engineering Research Laboratory, University of California, Berkeley (CA).
Kuo, A. Y., Liu, W. C., 2001. Investigation of hydrodynamic characteristics in the Tanshui River estuarine system. In: The 2001 Agricultural Engineering Annual Conference, Department of Agricultural Engineering, National Taiwan University, Taipei, Taiwan, pp. 1-13 (in Chinese).
Lane, A., and Prandle, D., 2006. Random-walk particle modeling for estimating bathymetric evolution of an estuary. Estuarine, Coastal and Shelf Science, 68(1-2), 175-187.
Ledwell, J. R, Watson, A. J. and Law, C. B. 1993. Evidence for slow mixing across the pycnocline from the open-ocean tracerrelease experiment. Nature, 364 (6439): 701-703.
Li, M., Zhong, L. and Boicourt, W. C., 2005. Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations. J. Geophys. Res., 110, C12004, doi:10.1029/2004JC002585.
Lin, J., Kuo, A. Y. 2003. A model study of turbidity maxima in the York River estuary, Virginia. Estuaries, 26(5), 1269-1280.
Liu, K. K., Kao, S. J., Wen, L. S., Chen, K. L., 2007a. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the Total Environment 382 (1), 103-120.
Liu, W.C., Hsu, M.H. and Kuo, A.Y., 2001. Investigation of long-term transport in Tanshui River estuary, Taiwan. ASCE Journal of Waterways, Port, Coastal, and Ocean Engineering. 127 (2), 61-71.
Liu, W.C., Hsu, M.H., Kuo, A.Y., 2002. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Marine Pollution Bulletin, 44 (10), 1076-1088.
Liu, W. C., Hsu, M. H., Wu, C. R., Wang, C. F., Kuo, A. Y., 2004. Modelling saltwater intrusion in Tanshui River estuarine system-case-study contrasting now and then. Journal of Hydraulic Engineering-ASCE 130(9), 849-859.
Liu, W. C., Chen, W. B., Cheng, R. T., Hsu, M. H., Kuo, A. Y., 2007b. Modelling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan. Continental Shelf Research 27 (7), 900-921.
Lopes, J.F., Dias, J.M., Dekeyser, I., 2006. Numerical modelling of cohesive sediment transport in the Ria de Aveiro lagoon, Portugal. Journal of Hydrology, 319 (1-4), 176-198.
Mariano, A. J., Kourafalou, V. H., Srinivasan, A., Kang, H., Halliwell, G. R., Ryan,. E. H., and Roffer, M., 2011. On the modeling of the 2010 Gulf of Mexico Oil Spill. Dynamics of Atmospheres and Oceans, 52 322-340.
Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851-875.
Mercier, C., Delhez, E.J.M., 2007. Diagnosis of the sediment transport in Belgian Coastal zone. Estuarine, Coastal and Shelf Science, 74 (4), 670-683.
Monsen, N. E., Cloern, J. E., Lucas, L.V., Monismith, S. G., 2002. A comment on the use of flushing time, residence time, and age as transport time scales. Limnology and Oceanography 47 (5), 1545-1553.
Munk, W. H., 1966. Abyssal recipes. Deep Sea Research 13(4): 707-730.
Nakano, M., and Povinec, P., 2003. Oceanic general circulation model for the assessment of the distribution of 137Cs in the world ocean. Deep-Sea Research II, 50(17- 21), 2803–2816.
Normant, C.L., 2000. Three-dimensional modelling of cohesive sediment transport in the Loire estuary. Hydrological Processes, 14 (13), 2231-2243.
Oey, L. Y, Mellor, G. L and Hires, R. I., 1985. A 3-dimensional simulation of the Hudson-Raritan estuary. Part 1. Description of the model and model simulation. Journal of Physical Oceanography 15(12): 1676-1692.
Officer, C. B., 1976. Physical Oceanography of Estuaries (and Associated Coastal Waters). Wiley, New York, NY, USA.
Oliveira, A., Fortunato, A.B., Pinto, L., 2006a. Modelling the hydrodynamics and the fate of passive and active organisms in the Guadiana estuary. Estuarine, Coastal and Shelf Science 70, 76-84.
Oliveira, A., Fortunato, A. B., Rego, J. R. L., 2006b. Effect of morphological changes on the hydrodynamics and flushing properties of the Obidos lagoon (Portugal). Continental Shelf Research 26 (8), 917-942.
Pan, C., Huang, W., 2010. Numerical modeling of suspended sediment transport affected by tidal bore in Qiantang Estuary. Journal of Coastal Research, 26 (6), 1123-1132.
Pang, C. G., Zhao, E. B., Yang, Y., 2010. Numerical simulation on the process of saltwater intrusion and its impact on the suspended sediment concentration in the Changjiang (Yangtze) estuary. Chinese Journal of Oceanology and Limnology, 28 (3), 609-U1.
Park, K., Wang, H.V., Kim, S.C., Oh, J.H., 2008. A model study of the estuarine turbidity maximum along the main channel of the upper Chesapeake Bay. Estuaries and Coasts, 31 (1), 115-133.
Partheniades, E. 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulic Division, ASCE, proceedings 91, 105-139.
Perianez, R., 2004. A particle-tracking model for simulating pollutant dispersion in the Strait of Gibraltar. Marine Pollution Bulletin, 49(7-8), 613-623.
Perianze, R., 2005. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion. Environmental Pollution, 133 (2005), 351-364.
Perianez, R., and Elliott, A. J., 2002. A particle tracking method for simulation the dispersion of nonconservative radionuclides in coastal waters. Journal of Environmental Radioactivity, 58(1), 13-33.
Perianez, R., and Pascual-Granged, A., 2008. Modelling surface radioactive, chemical and oil spills in the Strait of Gibraltar. Computers & Ceosciences, 34(2), 163-180.
Picado, A., Dias, J. M. and Fortunato, A. B., 2010. Tidal changes in estuarine systems induced by local geomorphologic modifications. Continental Shelf Research, 30, 1854-1864.
Pond, S., Pichard, G. L. 1998. Introductory Dynamical Oceanography. Butterworth-Heinmann.
Prandle, D. 2009. Estuaries: Dynamics, Mixing, Sedimentation and Morphology. Cambridge University Press, Cambridge, UK.
Pritchard, D. W. 1952. Estuarine hydrography. In: Advances in Geophysics, Academic Press Inc. Vol. 1, 234-280.
Pritchard, D. W., 1954. A study of the salt balance in a coast plain estuary. Journal of Marine Research, 13(1), 133-144.
Pritchard, D. W., 1956. The dynamic structure of a coastal plain estuary. Journal of Marine Research. 15(1), 33-42.
Proctor, Roger, Flather, Roger A., Elliott, Alan J., 1994. Modelling tides and surface drift in the Arabian Gulf-application to the Gulf oil spill. Continental Shelf Research 14, 531-545.
Rao, A. D., 1995. A numerical modelling study of the flow and salinity structures in the Godavari estuary, east coast of India. In-ternational Journal for Numerical Methods in Fluids, 21, 35-48.
Reed, M., Johansen, O., Brandvik, P.J., Daling, P., Lewis, A., Fiocco, R., Mackay, D., Prentki, R., 1999. Oil spill modelling toward the close of the 20th century: overview of the state-of-the-art. Spill Science and Technology Bulletin 5, 3-16.
Regnier, P. Wollast, R., 1993. Distribution of trace metals in suspended matter of the Scheldt estuary. Marine Chemistry 43, 3-19.
Rego, J. L., Meselhe, E., Stronach, J., Habib, E., 2010. Numerical modeling of the Mississippi-Atchafalaya Rivers' sediment transport and fate: consideration for diversion scenarios. Journal of Coastal Research, 26 (2), 212-229.
Rodi, W., 1984. Turbulence models and their applications in hydraulics: a state of the art review. International Association for Hydraulics Research, Delft, The Netherlands.
Sanford, L.P., 1992. New sedimentation, resuspension and burial. Limnology and Oceanography, 37 (6), 1164-1178.
Schubel, J.R., 1968. Turbidity maximum of the northern Chesapeake Bay. Science, 161, 1013-1015.
Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following- coordinate, oceanic model. Ocean Modelling, 9, 347-404.
Shen, J., Haas, L., 2004. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine, Coastal and Shelf Science 61, 449-461.
Shen, J., Lin, J., 2006. Modelling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine, Coastal and Shelf Science 68 (1-2), 101-112.
Shen, J., Wang, H.V., 2007. Determining the age of water and long-term transport timescale of the Chesapeake Bay. Estuarine. Coastal and Shelf Science 74 (4), 585-598.
Shi, J.Z., Zhou, H.Q., Liu, H., Zhang, T.G., 2010. Two-dimensional horizontal modeling of fine-sediment transport at the South Channel-North Passage of the partially mixed Changjiang River estuary, China. Environmental Earth Sciences, 61 (8), 1691-1702.
Simpson, J.H., Brown, J., Matthews, J., Allen, G., 1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13, 125-132.
Sinha, P.C., Guliani, P., Jena, G.K., Rao, A.D., Dube, S.K., Chatterjee, A.K., Murty, T., 2004. A breath averaged numerical model for suspended sediment transport in Hooghly estuary, east coastal of India. Natural Hazards, 32 (3), 239-255.
Stentchev, A., Korotenko, K., 2005. Dispersion processes and transport pattern in the ROFI system of the eastern English Channel derived from a particle-tracking model. Journal of Marine Systems 25 (18), 2294-2304.
Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Rev. 91, 99–164.
Su, S. F., 2006. Variation of tidal current vertical structure at Tanshui Estuary region, Taiwan. M.Sc. thesis, National Sun Yat-Sen University (in Chinese).
Suh, S. W., 2006. A hybrid approach to particle and Eulerian–Langrangian models in the simulation of coastal dispersion. Environmental Modelling & Software, 21(2), 234-242.
Takeoka, H., 1984. Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research 3 (3), 311-326.
Traykovski, P., Geyer, W.R., Sommerfield, C., 2004. Rapid sediment deposition and fine-scale strata formation in the Hudson estuary. Journal of Geophysical Research 109, F02004, doi: 10.1029/2003JF000096.
Thonon, I., Jong, K. D., Park, M. V. D., and Middelkoop, H., 2007. Modelling floodplain sedimentation using particle tracking. Hydrological Processes, 21(11), 1402-1412.
Umlauf, L, Buchard, H. 2003. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61(2), 235-265.
Van Wijngaarden, M. 1999. A two-dimensional model for suspended sediment transport in the southern branch of the Rhine-Meuse estuary, the Netherlands. Earth Surface Processes and Landforms, 24(13), 1173-1188.
Van der Ham, R., Winterwerp, J.C., 2001. Turbulent exchange of fine sediments in a tidal channel in the Ems/Dollard estuary.Part II.Analysis with a 1DV numerical model. Continental Shelf Research, 21, 1629-1647.
Visser, A.W., 1997. Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Marine Ecology Progress Series 158, 275-281.
Wang, C.F., Hsu, M.H., Kuo, A.Y., 2004. Residence time of the Danshuei River estuary, Taiwan. Estuarine, Coastal and Shelf Science 60, 381-393.
Wang, B., Giddings, S. N., Fringer, O. B., Gross, E. S., Fong, D. A., Monismith, S. G., 2011. Modeling and understanding turbulent mixing in a macrotidal salt wedge estuary. Journal of Geophysical Research, 116, C02036.
Wang, D. P. and Kravitz, D. W., 1980. A semi-implicit two-dimensional model of estuarine circulation. Journal of Physical Oceanography, 10, 441-451.
Wang, S. D., Shen, Y. M., & Zheng, Y. H., 2005a. Twodimensional numerical simulation for transport and fate of oil spills in seas. Ocean Engineering, 32(13), 1556-1571.
Wang, X. H., Byun, D. S., Wnag, X. L., and Cho, Y. K., 2005b. Modelling tidal currents in a sediment stratified idealized estuary. Continental Shelf Research, 25 (2005) 655-665
Wang, Y.H., 2002. Mapping flow using towed-ADCP in coastal water of Taiwan. In: Proceedings of the 24th Ocean Engineering Conference in Taiwan, pp. 485-490 (in Chinese).
Warner, J. C, Geyer, W. R and Lerezak, J. A . 2005. Numerical modeling of an estuary: a comparative skill assessment. Journal Geophysical Research 110C05001, doi:10.1029/2004 JC002691.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., Arango, H. G.. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10), 1284-1306.
Wilcox, D.C., 1998. Reassessment of scale determining equation for advance turbulence models. AIAA J. 26, 1299-1310.
Wijesekera, H. W., Allen, J. S. and Newberger, P. A. 2003. Modeling study of turbulent mixing over the continental shelf: comparison of turbulence closure schemes. Journal of Geophysical Research 108(C3): 3103, doi:10.1029/2001 JC001234.
Wilmott, C. J. 1981. On the validation of models. Physical Geography 2(2): 184-194.
Wu, H., Zhu, J., and Choi, B. H., 2010. Links between saltwater intrusion and subtidal circulation in the Changjiang Estuary: A model-guided study. Continental Shelf Research, 30, 1891-1905.
Wu, J.T., Chou, T.L., 2003. Silicate as the limiting nutrient for phytoplankton in a subtropical eutrophic estuary of Taiwan. Estuarine, Coastal and Shelf Science 58 (1), 155–162.
Wu, S.C., 1997. The treatment of domestic sewage by soil. EPA Report: EPA 86-E3G1- 09-02, Taiwan (in Chinese), 233 pp.
Wu, Y., Chaffey, J., Greenberg, D.A., Colbo, K., Smith, P. C., 2011. Tidally-induced sediment transport patterns in the upper Bay of Fundy: A numerical study. Continental Shelf Research, 31, 2041-2053.
Yuan, D., Lin, B., Falconer, R.A., 2007. A modelling study of residence time in a macro-tidal estuary. Estuarine, Coastal and Shelf Science 71, 401-411.
Zeng, X, Zhao, M., Dickinson, R. E. 1998. Intercomparsion of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. Journal of Climate, 11(10), 2628-2644.
Zhang, Y. L., Baptista, A. M., Myers, E. P. 2004. A cross-scale model for 3D baroclinic circulation in estuary–plume–shelf systems: I. Formulation and skill assessment. Continental Shelf Research, 24(18), 2187-2214.
Zhang, Y. L., Baptista, A. M., 2008. SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling, 21(3-4), 71-96.
Zheng, L.Y., Chen, C.S., Alber, M., Liu, H., 2003. A modelling study of the Satilla River estuary, Georgia. II: suspended sediment. Estuaries, 26 (3), 670-679.
Zhong, L., Li, M., 2006. Tidal energy fluxes and dissipation in the Chesapeake Bay. Continental Shelf Research 26 (6), 752-770.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66095-
dc.description.abstract河口為河流與海洋交會之處,亦為淡水與海水混合之處,故潮流、水密度以及懸浮沈積物呈現複雜之非線性交互作用。主要影響河口物質傳輸因子為潮流與上游流量。河口之水理狀況為三度空間型態,因此三維水理模式可精確模擬河口各種水理及傳輸現象。本研究目的及貢獻在建置與發展淡水河系三維水理懸浮沈積物傳輸模式,並將模擬區域延伸至淡水河近海,使模擬結果更吻合實際狀況。模式經過與觀測資料(包括水位、流速、鹽分以及懸浮沈積物濃度)檢定後應用於淡水河口物理特性之研究。
研究結果顯示,鹽分、流速以及擴散係數呈現明顯之漲、退潮不對稱;流速、紊流混合與垂直分層於大、小潮過程中出現雙週擾動週期,而小潮的河口環流較大潮為強。殘餘環流中,尤拉傳輸為河口物質往外海傳送之機制,而史托克傳輸則為往上游傳送之機制。數值模式實驗指出,淡水河口之河口停留時間不超過三天,而河口環流為加速物質傳輸之主因。經顆粒追蹤模式模擬,於Q60流量下,水體之年(age)在淡水河口約320小時、新店溪口約100小時,基隆河口約485小時。顆粒釋放實驗顯示,相較於潮流的影響,風對於河道中顆粒分布影響甚微,而有、無密度環流則會呈現不同型態之顆粒分布。漏油模擬則指出,無論漏油事件發生於河道或港口,洩漏時間點與風向為影響油污軌跡分布之重要因素。
懸浮沈積物傳輸模擬結果顯示,高剪應力與較深的地形,可能是淡水河口最大混濁帶出現於關渡橋附近之原因。懸浮沈積物濃度隨著紊流擴散係數提高而些微上升,但高游流量可使得懸浮沈積物濃度有顯著的增高,懸浮沈積物濃度於大潮時約為小潮的1.5倍。而於地形改變後,最大混濁帶位從原來的距河口7-12公里擴張到7-16公里。
zh_TW
dc.description.abstractEstuaries are coastal waters where the mouth of the river meets the ocean and where the freshwater of the river mixes with the saline water from the ocean, and represent the complex nonlinear interaction of tides, current, salt, water and suspended sediment. The primary factors controlling transport processes in estuaries are tides and freshwater from upstream. Hydrodynamic processes in estuaries are generally three-dimensional; hence, implementation of the three-dimensional model for estuarine system is imperative.
In the present study, a three-dimensional hydrodynamic model incorporating suspended sediment module was developed and applied to the Danshuei River estuarine system and its adjacent coastal sea. The model was calibrated with measured water surface elevation, tidal current, salinity and suspended sediment concentration (SSC). The overall model simulation results are in qualitative accordance with the available field data. The validated model was then adopted to investigate the physical properties of the Danshuei River estuary.
The vertical profiles of salinity, velocity, and eddy diffusivity show a marked asymmetry between the flood and ebb tides; moreover, the tidal currents, turbulent mixing and vertical stratification show large fortnightly fluctuations over the spring-neap cycle. The circulation strengths were stronger during the neap tides than during the spring tides. The Eulerian transport is always seaward, whereas the Stokes transport is the main mechanism driving the up-estuary. According to the numerical experiments, the residence time is less than three days under mean flow conditions and the density-induced circulation play an accelerating role for mass transport.
The particle-tracking model indicates that the water ages were approximately 320, 100 and 485 hours at the mouths of the Danshuei River-Tahan Stream, the Hsintien Stream and the Keelung River under the Q60 flow condition. Particles released experiments show that compare to the tidal current, wind influences were insignificant in the river channel. However, particle distribution was affected by density-induced circulation. The trajectories of oil spill were sensitivity to the leaking timing and wind direction, no matter oil spill even occurred in the river channel or harbor, because the oil particles always drift on the water surface.
The estuarine turbidity maximum appears around Kuan-Du Bridge, it may be due to the high bottom stress and deeper topography there. The SSC has slight raise with increasing turbulent eddy diffusivities but significant increase with high freshwater discharge. The SSC is over 1.5 times higher at spring tide than that at neap tide. The estuarine turbidity maximum extends its range from 7.0~12.0km to 7.0~16.0km (distance from the Danshuei River mouth) under the condition of bathymetric change.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:21:39Z (GMT). No. of bitstreams: 1
ntu-101-D97622002-1.pdf: 5941677 bytes, checksum: fa4af107a498d1e27fa688b355794591 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsLIST OF FIGURES III
LIST OF TABLES IX
CHAPTER 1 INTRODUCTION 1
1-1 Description of Estuarine Environment 1
1-2 Objective of the Study 2
1-3 Description of Study Site 3
CHAPTER 2 LITERATURE REVIEWS 9
2-1 Hydrodynamic Model 9
2-2 Suspended Sediment Transport Model 10
CHAPTER 3 DEVELOPMENT OF SUSPENDED SEDIMENT TRANSPORT MODEL 13
3-1 Physical Formulation of Hydrodynamic Model 13
3-2 Parameterization of Turbulent Vertical Mixing 14
3-3 Vertical Boundary Conditions for the Momentum Equation 16
3-4 Numerical formulation of Hydrodynamic Model 18
3-5 Suspended Sediment Transport Model 19
CHAPTER 4 MODEL VALIDATION 23
4-1 Implementation of Hydrodynamic Model and Suspended Sediment Transport Model 23
4-2 Determination of Turbulence Mixing Parameters 24
4-3 Validation of Hydrodynamic Model 26
4-3-1 Water surface elevation 26
4-3-2 Tidal current 27
4-3-3 Salinity time-series and spatial distribution 28
4-4 Validation of Suspended Sediment Transport Model 31
CHAPTER 5 INVESTIGATION OF ESTUARINE PHYSICAL PROPERTIES 53
5-1 Flood-Ebb Asymmetry 53
5-2 Spring-Neap Cycle 55
5-3 Subtidal Circulation 56
5-4 Estuarine Residence Time 57
5-5 Three-Dimensional Lagrangian Particle Tracking Model 59
5-5-1 Particles transport in the river channel 61
5-5-2 Trajectory modeling of oil spill 64
5-5-3 The age of water 67
5-6 Diagnostic Study of Suspended Sediment Transport Model 70
5-6-1 Formation of estuarine turbidity maximum 70
5-6-2 Effect of turbulent mixing 71
5-6-3 Effect of spring and neap tide 72
5-6-4 Effect of different freshwater discharge 73
5-6-5 Effect of Bathymetric Change 74
CHAPTER 6 CONCLUSTIONS AND RECOMMENDATIONS 115
6-1 Conclusions 115
6-2 Recommendations 117
APPENDIX A. NUMERICAL ALGORITHM 119
REFERENCES 125
Vita 139
dc.language.isoen
dc.subject河口最大混濁帶zh_TW
dc.subject河口與近海zh_TW
dc.subject水理模式zh_TW
dc.subject淡水河系zh_TW
dc.subject顆粒追蹤模式zh_TW
dc.subject懸浮沈積物傳輸模式zh_TW
dc.subjectsuspended sediment moduleen
dc.subjectestuarine turbidity maximumen
dc.subjectthe Danshuei River systemen
dc.subjectParticle-tracking modelen
dc.subjectEstuariesen
dc.subjectHydrodynamic modelen
dc.title河口與近海三維水理與懸浮沈積物傳輸模式之建置與發展zh_TW
dc.titleImplementation and Development of Three-dimensional Hydrodynamic and Suspended Sediment Transport Model for
Estuarine System and Its Adjacent Coastal Sea
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee張倉榮(Tsang-Jung Chang),柳文成(Wen-Cheng Liu),吳瑞賢(Ray-Shyan Wu,),葉克家(Keh-Chia Yeh),李光敦(Kwan-Tun Lee)
dc.subject.keyword河口與近海,水理模式,淡水河系,顆粒追蹤模式,懸浮沈積物傳輸模式,河口最大混濁帶,zh_TW
dc.subject.keywordEstuaries,Hydrodynamic model,suspended sediment module,Particle-tracking model,the Danshuei River system,estuarine turbidity maximum,en
dc.relation.page144
dc.rights.note有償授權
dc.date.accepted2012-06-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved