請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊全(Chiun-Chuan Chen) | |
| dc.contributor.author | Chueh-Hsin Chang | en |
| dc.contributor.author | 張覺心 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:21:29Z | - |
| dc.date.available | 2014-06-29 | |
| dc.date.copyright | 2012-06-29 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-15 | |
| dc.identifier.citation | [1] S. Ahmad and A. Lazer, Asymptotic behaviour of solutions of periodic com-
petition diffusion system, Nonlinear Anal., 13 (1989), pp. 263-284. [2] J. Alexander, R. Gardner, and C. K. R. T. Jones, A topological invari- ant arising in the stability analysis of travelling waves, J. Reine Angew. Math., 410 (1990), pp. 167-212. [3] C. C. Chen, L, C, Hung, M. Mimura, Makato Tohma, and D. Ueyama, preprint. [4] C. C. Chen, L, C, Hung, M. Mimura, and D. Ueyama, Exact Traveling Wave Solutions of Three Species, preprint. [5] S.-N. Chow, B. Deng, and B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, J. Dynamical Systems and Differential Equations, 2 (1990), pp. 177- 244. [6] S.-N. Chow, B. Deng, and D. Terman, The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits, SIAM J. Math Anal., 21 (1990), pp. 179–204. [7] S.-N. Chow, B. Deng, and D. Terman, The bifurcation of a homoclinic orbit from two heteroclinic orbits-a topological approach. Appi. Anal, 42 (1991), pp. 275-296. 161[8] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa- tions, McGraw-Hill, New York, 1955. [9] C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), pp. 319–343. [10] W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Math. 629, Springer-Verlag, Berlin, 1978. [11] B. Deng, The Shil’nikov problem, exponential expansion, strong λ-lemma, C 1 - linearization, and homoclinic bifurcation, J. Differential Equations, 79 (1989), pp. 189–231. [12] B. Deng, The existence of infinitely many travelling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal. 22 (1991), pp. 1631–1650. [13] A. Doelman, P. van Heijster, and T. J. Kaper, Pulse dynamics in a three-component system: Existence analysis, J. Dynam. Differential Equations, 21 (2009), pp. 73–115. [14] S. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations 14 (2002), pp. 85–136. [15] S. Ei, R. Ikota, and M. Mimura, Segregating partition problem in competition-diffusion systems, Interfaces Free Bound., 1 (1999), pp. 57–80. [16] R. A. Gardner, Existence and stability of travelling wave solutions of compe- tition models: A degree theoretic approach, J. Differential Equations, 44 (1982), pp. 343–364. [17] J. S. Guo and Y .C. Lin, The sign of the wave speed for the Lotka-Volterra competition-diffusion system, submitted. 162[18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840 (1981), Springer-Verlag. [19] M.W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows. Nonlinear partial differential equations (1983), pp. 267–285. [20] M.W. Hirsch, Systems of differential equations which are competitive or coop- erative. III. Competing species. Nonlinearity 1 (1988), pp. 51–71. [21] A. J. Homburg and B. Sandstede, Homoclinic and Heteroclinic Bifurcations in Vector Fields, in Hand-book of Dynamical Systems III: H. Broer, F. Takens and B. Hasselblatt, ed., Elsevier, 2010, pp. 379–524. [22] S. Hsu, Predator-mediated coexistence and extinction. Math. Biosci. 54 (1981), no. 3-4, pp. 231–248. [23] L, C, Hung, Traveling Wave Solutions of Competitive-Cooperative Lotka- Volterra Systems of Three Species, to appear in Nonlinear Analysis: Real world applications. [24] H. Ikeda, Travelling wave solutions of three-component systems with competi- tion and diffusion. Math. J. Toyama Univ. 24 (2001), pp. 37–66. [25] H. Ikeda, Multiple travelling wave solutions of three-component systems with competition and diffusion. Methods Appl. Anal. 8 (2001), no. 3, pp. 479–496. [26] H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three- component systems with competition and diffusion, Hiroshima Math. J., 32 (2001), pp. 87–124. [27] H. Ikeda, Dynamics of weakly interacting front and back waves in three- component systems. Toyama Math. J. 30 (2007), pp. 1–34. 163[28] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal. 26 (1995), pp. 340–363. [29] Y. Kan-on, Existence of standing waves for competition-diffusion equations, Japan J. Indust. Appl. Math. 13 (1996), pp. 117–133. [30] Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal. 28 (1997), pp. 145–164. [31] Y. Kan-on, Existence and instability of Neumann layer solutions for a 3- component Lotka-Volterra model with diffusion. J. Math. Anal. Appl. 243 (2000), no. 2, pp. 357–372. [32] Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), pp. 343–349. [33] Y. Kan-on and M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics, SIAM J. Math. Anal. 29 (1998), pp. 1519–1536. [34] Y. Kan-on and E. Yanagida, Existence of non-constant stable equilibria in competition-diffusion equations, Hiroshima Math. J., 33 (1993), pp. 193–221. [35] K. Kishimoto, The diffusive Lotka-Volterra system with three species can have a stable non-constant euqilibrium solutions. J. Math. Biol., 16 (1982), pp. 103-112. [36] K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domain, J. Differential Eauations 58 (1985), pp. 15-21. [37] H. Kokubu, On a codimension 2 bifurcation of heteroclinic orbits, Proceedings of Japan Academy, 63 (1987), pp. 298-301. 164[38] H. Kokubu, Homoclinic and heteroclinic bifurcations of vector fields, Japan J. Appl. Math., 5 (1988), pp. 455–501. [39] H. Kokubu, Y. Nishiura, and H. Oka, Heteroclinic and Homoclinic bifurca- tions in bistable reaction diffusion systems. J. Differential Equations 86 (1990), pp. 260-341. [40] X.-B. Lin, Using Melnikov’s method to solve Silnikov’s problems. Proc. Royal Soc. Edinburgh 116A (1990), pp. 295–325. [41] A. J. Lotka, Contribution to the Theory of Periodic Reactions , J. Phys. Chem., 1910, 14 (3), pp. 271–274. [42] A. J. Lotka, Undaped oscillations derived from the law of mass action , J.Amer. Chem. Soc. 42, 1920, pp. 1595–1599. [43] A. J. Lotka, Elements of Mathematical Biology, Williams and Wilkins, Balti- more, 1925. [44] H. Matano and M. Mimura, Pattern formation in competition-diffusion sys- tems in nonconvex domains, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, pp. 1049–1079. [45] P. D. Miller, Nonmonotone waves in a three species reaction-diffusion model, Methods and Applications of Analysis 4 (1997), pp. 261–282. [46] P. D. Miller, Stability of non-monotone waves in a three-species reaction- diffusion model, Proceedings of the Royal Society of Edinburgh 129A(1999), pp. 125–152. [47] M. Mimura and P. C. Fife, A 3-component system of competition and diffu- sion, Hiroshima Math. J. 16 (1986), pp. 189–207. 165[48] M. Mimura and D. Ueyama, private communication. [49] K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equa- tions, 55 (1984), pp. 225–265. [50] K. J. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc. 104, pp. 149–156. [51] C.V. Pao, Coexistence and stability of a competition–diffusion system in popu- lation dynamics, J. math. Analysis Applic., 83 (1981), pp. 54–76. [52] L. Perko, Differential Equations and Dynamical Systems, Springer, 1991. [53] M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations. Japan J. Indust. Appl. Math. 18 (2001), pp. 657– 696. [54] B. Sandstede, Stability of travelling waves, in Handbook of Dynamical Systems II: Towards Applications, B. Fiedler, ed., North-Holland, Amsterdam, 2002, pp. 983–1055. [55] L. P. Shil’nikov, On a Poincare-Birkhoff problem, Math. USSR-Sb., 3 (1967), pp. 353–371. [56] L. P. Shil’nikov, On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type, Math. USSR-Sb., 77 (1968), pp. 427–438. [57] L. P. Shil’nikov, A. L. Shil’nikov, D. V. Turaev and L. O. Chua. Methods of qualitative theory in nonlinear dynamics. Part I. World Scientific Publishing Co., 1998. [58] M. M. Tang and P. C. Fife, Propagating fronts for competing species equa- tions with diffusion, Arch. Ration. Mech. Anal., 73 (1980), 69-77. 166[59] A. I. Volpert, V. A. Volpert and V. A. Volpert. Traveling Wave Solu- tions of Parabolic Systems.Translations of Mathematical Monographs 140, Amer. Math. Soc., Providence (1994). [60] V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conciventi (Variations and fluctuations of the number of individuals in animal species living together)Memoria della R. Accademia Nazionale dei Lincei, Ser. VI 2, 31 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66091 | - |
| dc.description.abstract | 這篇博士論文分為兩個部分,以考慮兩種由生態學而來的偏微分方程的行波解。第一部份我們考慮三個物種的競爭擴散系統。第二部分是考慮關於雙物種的自由邊界問題。
關於三個物種的競爭擴散系統,其行波解可以考慮為 R^6 中某向量場的異宿軌道 (heteroclinic orbit)。方程的參數在適當的假設下,我們利用異宿軌道的分歧理論來證明,三個物種的行波解可由兩個連接到某個相同平衡點(equilibrium)的雙物種行波解分歧出來。此三物種行波解的每一個部分都是正解。其波形為:其中一個物種連接某個正態(positive state)到零,另一物種連接零到某個正態, 第三物種為介於以上兩物種中間,在某個長區間內靠近某正態的脈衝(pulse)。我們對方程的參數,在哪些範圍會有三物種的行波解,找到了某些明確的表現形式,來作為此結果的具體應用。 關於雙物種競爭模型的自由邊界問題,最早是由 Mimura, Yamdada 及 Yotsutani 所提出。基於 Du 和 Lin 的散佈--消滅二分性(spreading-vanishing dichotomy)的結果,我們假設,當時間趨於無窮,自由邊界的散佈速度會趨於某個常數,而由此考慮對應於原自由邊界問題的的行波解問題。我們得出此問題的行波解的存在性與唯一性。 | zh_TW |
| dc.description.abstract | We divide the thesis into two parts to investigate the travelling wave of two types partial differential
equations coming from ecology. In Part 1, we consider the 3-species Lotka-Volterra competition-diffusion systems. In Part 2, we consider a free boundary problem for a two-species competitive model. For the 3-species Lotka-Volterra competition-diffusion system, a travelling wave solution can be considered as a heteroclinic orbit of a vector field in R^6. Under suitable assumptions on the parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a 3-species travelling wave can bifurcate from two 2-species waves which connect to a common equilibrium. The three components of the 3-species wave obtained are positive and have the profiles that one component connects a positive state to zero, one component connects zero to a positive state, and the third component is a pulse between the previous two with a long middle part close to a positive constant. As concrete examples of application of our result, we find several explicit regions of the parameters of the equations where the bifurcations of 3-species travelling waves occur. The free boundary problem for a two-species competitive model in ecology was proposed by Mimura, Yamada and Yotsutani. Motivated by the spreading-vanishing dichotomy obtained by Du and Lin, we suppose the spreading speed of the free boundary tends to a constant as time tends to infinity and consider the corresponding travelling wave problem. We establish the existence and uniqueness of a travelling wave solution for this free boundary problem. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:21:29Z (GMT). No. of bitstreams: 1 ntu-101-D94221007-1.pdf: 1476765 bytes, checksum: b1b7f9bd89ace701324d5246ba216a0d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Acknowledgements (in Chinese) i
Acknowledgements (in English) iii Abstract (in Chinese) v Abstract (in English) vii 1 Introduction 1 I 3-species Lotka-Volterra competition-diffusion systems 5 2 Introduction, preliminaries and results 7 2.1 Introduction 7 2.2 Preliminaries 18 2.3 Results 22 3 Conditions (H1) to (H4) 27 3.1 Introduction 27 3.2 Conditions (H1) to (H4) 27 3.3 Proof of (H1) 30 3.4 Proof of (H2) 31 ix3.5 Proof of (H3) 39 3.6 Solutions of y0 = − y∂ Y F (h 1 (z), µ 0 ) and exponential dichotomy 49 3.7 Proof of (H4) 54 4 Proof of the results 61 4.1 Introduction 61 4.2 Proof of Theorem 2.3.1: existence of O i − O i+1 connection 62 4.3 Existence of 3 species waves 65 4.3.1 Proof of Theorem 2.3.2 (1), (2), (3): existence of O 1 − O 3 con-nection 65 4.3.2 Proof of Theorem 2.3.2 (4): positivity of 3-species waves 77 5 Existence of bifurcation points 85 5.1 Introduction 85 5.2 Proof of Theorem 2.3.4 86 5.2.1 Proof of Theorem 2.3.4 (1): Bifurcation points with speed equals zero 86 5.2.2 Proof of Theorem 2.3.4 (2): Bifurcation points with speed close to zero 91 5.3 Proof of Theorem 2.3.7: ODE stability 92 5.3.1 Proof 92 5.3.2 Strong competition between the three species u, v and w 93 5.4 Proof of Theorem 2.3.5 and Theorem 2.3.6 94 5.4.1 Theorem 2.3.5: general diffusion rate 95 5.4.2 Theorem 2.3.6: d v = d w = 1 96 6 Discussion and conclusions 99 6.1 Introduction 99 6.2 A remark on (H3) 99 x6.2.1 Introduction 99 6.2.2 λ +u = Λ +1 100 6.2.3 η− u = H−3 102 6.2.4 Other cases 104 6.3 Discussion 104 7 Appendix 107 7.1 Introduction 107 7.2 A stable manifold theorem for non-autonomous linear ordinary differ- ential equations 107 7.3 Asymptotic behaviors of fundamental solutions of L φ (U) = 0, L ψ (U)=0 109 7.3.1 Introduction 109 7.3.2 Fundamental solutions of L±φ(U) = 0, L± ψ(U)=0 110 7.3.3 Partial comparison principle 114 7.3.4 Fundamental solutions of L φ (U) = 0 and L ψ (U) = 0 117 7.4 Proof of estimates modified from Fife and Mimura’s paper 125 7.4.1 Preliminaries 125 7.4.2 Proof of Lemma 5.2.1 130 II Free boundary problem for a two-species competitive model 135 8 Introduction, results and proof 137 8.1 Introduction 137 8.2 Proof of the theorems 143 8.2.1 Proof of Theorem 8.1.1: non-zero latent heat 149 8.2.2 Proof of Theorem 8.1.2: zero and non-zero latent heat 152 8.3 Some remarks about the Stefan condition 153 xiIII List of symbols 155 9 List of symbols 157 | |
| dc.language.iso | en | |
| dc.subject | 散佈速度 | zh_TW |
| dc.subject | 競爭擴散系統 | zh_TW |
| dc.subject | 異宿分歧 | zh_TW |
| dc.subject | 行波解 | zh_TW |
| dc.subject | KPP型態方程 | zh_TW |
| dc.subject | 自由邊界問題 | zh_TW |
| dc.subject | competition-diffusion system | en |
| dc.subject | spreading speed | en |
| dc.subject | free boundary problem | en |
| dc.subject | KPP type equation | en |
| dc.subject | travelling waves | en |
| dc.subject | heteroclinic bifurcation | en |
| dc.title | 競爭擴散系統的行波解 | zh_TW |
| dc.title | Travelling Wave Solutions of Competition-Diffusion Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳宜良(I-Liang Chern),陳建隆(Jann-Long Chern),郭忠勝(Jong-Shenq Guo),夏俊雄(Chun-Hsiung Hsia),林太家(Tai-Chia Lin) | |
| dc.subject.keyword | 競爭擴散系統,異宿分歧,行波解,KPP型態方程,自由邊界問題,散佈速度, | zh_TW |
| dc.subject.keyword | competition-diffusion system,heteroclinic bifurcation,travelling waves,KPP type equation,free boundary problem,spreading speed, | en |
| dc.relation.page | 182 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
