請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66088
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇銘嘉 | |
dc.contributor.author | Yi-Chun Weng | en |
dc.contributor.author | 翁怡君 | zh_TW |
dc.date.accessioned | 2021-06-17T00:21:23Z | - |
dc.date.available | 2017-09-18 | |
dc.date.copyright | 2012-09-18 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-06-18 | |
dc.identifier.citation | 1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-53.
2. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2003; 26 Suppl 1: S5-20. 3. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature Reviews Molecular Cell Biology 2002; 3: 267-77. 4. Gili L, Mutalik VK, Venkates KV. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. Theoretical Biology Medical Modelling 2004; 1: 2. 5. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metabolism 2007; 5: 237-52. 6. Garcia JA, Incerpi EK. Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide. Arquivos Brasileiros de Cardiologia 2008; 90: 409-16. 7. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clinical and Experimental Pharmacology and Physiology 2007; 34: 255–62. 8. Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Molecular Endocrinology 2001; 15: 1864-9. 9. Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M et al. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. American Journal of Physiology-Heart and Circulatory Physiology 2006; 291: H787-96. 10. Brownsey RW, Boone AN, Allard MF. Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovascular Research 1997; 34: 3-24. 11. Mulvagh SL, Michael LH, Perryman MB, Roberts R, Schneider MD. A hemodynamic load in vivo induces cardiac expression of the cellular oncogene, c-myc. Biochemical and Biophysical Research Communications 1987; 147: 627-36. 12. Komuro I, Kurabayashi M, Takaku F, Yazaki Y. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overload hypertrophy of the rat heart. Circulation Research 1988; 62: 1075-9. 13. Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America 1988; 85: 339-43. 14. Guo W, Kong E, Meydani M. Dietary polyphenols, inflammation, and cancer. Nutrition and Cancer 2009; 61: 807-10. 15. Wongcharoen W, Phrommintikul A. The protective role of curcumin in cardiovascular diseases. International Journal of Cardiology 2009; 133: 145-51. 16. Hwang JT, Kwon DY, Yoon SH. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. New Biotechnology 2009; 26: 17-22. 17. Sud’ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Letters 1993; 329: 21-4. 18. Park EH, Kahng JH. Suppressive effects of propolis in rat adjuvant arthritis. Archives of Pharmacal Research 1999; 22: 554-8. 19. Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J, Kohn KW. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochemical Pharmacology 1994; 48: 595-608. 20. Hung MW, Shiao MS, Tsai LC, Chang GG, Chang TC. Apoptotic effect of caffeic acid phenethyl ester and its ester and amide analogues in human cervical cancer ME180 cells. Anticancer Research 2003; 23: 4773-80. 21. Lee ES, Uhm KO, Lee YM, Han M, Lee M, Park JM et al. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochemical and Biophysical Research Communications 2007; 361: 854-8. 22. Hayashi K, Kojima R, Ito M. Strain differences in the diabetogenic activity of streptozotocin in mice. Biological and Pharmaceutical Bulletin 2006; 29: 1110-9. 23. Huang BW, Chiang MT, Yao HT, Chiang W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes, Obesity and Metabolism 2004; 6: 120-6. 24. Park, S. H.; Ko, S. K.; Chung, S. H. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. J. Ethnopharmacol. 2005, 102, 326–335 25. Chi TC, Lee SS, Su MJ. Antihyperglycemic effect of aporphines and their derivatives in normal and diabetic rats. Planta Medica 2006; 72: 1175-80. 26. Jansson L, Carlsson PO, Bodin B, Andersson A, Kallskog O. Neuronal nitric oxide synthase and splanchnic blood flow in anaesthetized rats. Acta Physiologica Scandinavica 2005; 183: 257-62. 27. Bonora E, Manicardi V, Zavaroni I, Coscelli C, Butturini U. Relationships between insulin secretion, insulin metabolism and insulin resistance in mild glucose intolerance. Diabetes and Metabolism 1987; 13: 116-21. 28. Chou CH, Tsai YL, Hou CW, Lee HH, Chang WH, Lin TW et al. Glycogen overload by postexercise insulin administration abolished the exerciseinduced increase in GLUT4 protein. Journal of Biomedical Science 2005; 12: 991-8. 29. Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKRPPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKR-COX-2 in cancer cells. Journal of Agricultural and Food Chemistry 2009; 57: 305-10. 30. Chan TM, Young KM, Hutson NJ, Brumley FT, Exton JH. Hepatic metabolism of genetically diabetic (db/db) mice. I. Carbohydrate metabolism. American Journal of Physiology 1975; 229: 1702-12. 31. Ohta Y, Kitazaki T, Tsuda M. Thermogenesis in brown adipose tissue of genetically obese, diabetic (KKAY) mice. Endocrinology 1988; 35: 83-92. 32. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D et al. Experimental NIDDM: development of a new model in adult rats administered streptozocin and nicotinamide. Diabetes 1998; 47: 224-9. 33. Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H, Ezaki O. High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism 1996; 45: 1539-46. 34. Schreyer SA, Wilson DL, LeBoeuf RC. C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis 1998; 136: 17-24. 35. Jurgens H, Haass W, Castaneda TR, Schurmann A, Koebnick C, Dombrowski F et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obesity Research 2005; 13: 1146-56. 36. Asghar Z, Yau D, Chan F, Leroith D, Chan CB, Wheeler MB. Insulin resistance causes increased beta-cell mass but defective glucose-stimulated insulin secretion in a murine model of type 2 diabetes. Diabetologia 2006; 49: 90-9. 37. Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK et al. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes 2005; 54: 3530-40. 38. Weng YC, Chiu HL, Lin YC, Chi TC, Kuo YH, Su MJ. Antihyperglycemic effect of a caffeamide derivative, KS370G, in normal and diabetic mice. Journal of Agricultural and Food Chemistry 2010; 58: 10033-8 39. Sekiya M, Hiraishi A, Touyama M, Sakamoto K. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochemical and Biophysical Research Communications 2008; 375: 602-7. 40. Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP. Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. International Journal of Cardiology 2009; 134: 169-75. 41. Fiona J Sutherland, Michael J Shattock, Kathryn E Baker, David J Hearse. Mouse isolated perfused heart: Characteristics and cautions. Clinical and Experimental Pharmacology and Physiology 2003; 30: 867-78. 42. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444: 860-7. 43. Tamori Y, Sakaue H, Kasuga M. RBP4, an unexpected adipokine. Nature Medicine 2006; 12: 30-1 44. Liu Y, Michael MD, Kash S, Bensch WR, Monia BP, Murray SF et al. Deficiency of adipoR2 reduces diet-induced insulin resistance, yet promotes type 2 diabetes. Endocrinology 2007; 148: 683-92. 45. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356-62. 46. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132: 2169-80. 47. Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 2007; 132: 282-93. 48. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NFkB. Nature Medicine 2005; 11: 183-90. 49. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature Medicine 2005; 11: 191-8. 50. Date MO, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y et al. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. Journal of the American College of Cardiology 2002; 39: 907-12. 51. Garcia JA, Incerpi EK. Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide. Arquivos Brasileiros de Cardiologia 2008; 90: 409-16. 52. Lindpaintner K., Ganten D. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circulation Research 1991; 68: 905-21. 53. Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. The Journal of Clinical Investigation 2008; 118: 868-78. 54. Wojciechowski P, Juric D, Louis XL, Thandapilly SJ, Yu L, Taylor C et al. Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. Journal of Nutrition 2010; 140: 962-68. 55. Yayama K, Hiyoshi H, Okamoto H. Expressions of bradykinin B2-receptor, kallikrein and kininogen mRNAs in the heart are altered in pressure-overload cardiac hypertrophy in mice. Biological and Pharmaceutical Bulletin 2001; 24: 34-8. 56. Gao S, Long CL, Wang RH, Wang H. KATP activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function. Cardiovascular Research 2009; 83: 444-56. 57. Sharman JE, Qasem AM, Hanekom L, Gill DS, Lim R, Marwick TH. Radial pressure waveform dP/dt max is a poor indicator of left ventricular systolic function. Eur. The Journal of Clinical Investigation 2007; 37: 276-81. 58. Hashimoto I, Bhat AH, Li X, Jones M, Davies CH, Swanson JC et al. Tissue Doppler-derived myocardial acceleration for evaluation of left ventricular diastolic function. Journal of the American College of Cardiology 2004; 44: 1459-66. 59. Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL et al. Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Research in Cardiology 2010; 105: 325-35. 60. Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. Journal of Cell Biology 2000; 151: 117-30. 61. Li HL, Wang AB, Huang Y, Liu DP, Wei C, Williams GM et al. Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways. Free Radical Biology and Medicine 2005; 38: 243-57. 62. Baker KM, Chernin MI, Wixson SK, Aceto JF. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. American Journal of Physiology 1990; 259: H324-32. 63. Hara A, Yuhki K, Fujino T, Yamada T, Takayama K, Kuriyama S et al. Augmented cardiac hypertrophy in response to pressure overload in mice lacking the prostaglandin I2 receptor. Circulation 2005; 112: 84-92. 64. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotoxicity Research 2009; 16: 77-86. 65. Li HJ, Yin H, Yao YY, Shen B, Bader M, Chao L et al. Tissue kallikrein protects against pressure overload-induced cardiac hypertrophy through kinin B2 receptor and glycogen synthase kinase-3beta activation. Cardiovascular Research 2007; 73: 130-42. 66. Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by AKT in cardiomyocytes. The New York Academy of Sciences 2004; 1015: 250-60. 67. Kuwahara F, Kai H, Tokuda K, Takeya M, Takeshita A, Egashira K et al. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension 2004; 43: 739-45. 68. Tomanek RJ, Aydelotte MR. Late onset renal hypertension in old rats alters left ventricular structure and function. American Journal of Physiology 1992; 262: H531-38. 69. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circulation Research 1991; 69: 1185-1195. 70. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L et al. Apoptosis in pressure overload-induced heart hypertrophy in the rat. The Journal of Clinical Investigation 1996; 97: 2891-7. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66088 | - |
dc.description.abstract | 咖啡酸苯乙酯(caffeic acid phenylethyl ester)是蜂膠的主要成分,廣泛存在於自然界中,並且具有抗糖尿病以及心血管保護的作用。然而,咖啡酸苯乙酯在生物體內容易被酯酶(esterase)代謝而失去效用,因此生體可用率不高。在本研究中,我們利用ICR小鼠模式,探討咖啡酸苯乙酯以及白藜蘆醇(resveratrol)結構類似物—咖啡酸苯乙醯胺(caffeic acid phenylethyl amide,KS370G)對於代謝以及心血管是否具有保護作用。
在KS370G降血糖作用的實驗中,我們使用正常的小鼠、streptozocin誘發的第一型糖尿病小鼠以及飲食誘發的第二型糖尿病小鼠進行研究。單劑量口服給予KS370G可有效降低正常以及糖尿病小鼠的血糖值,同時也可增加正常以及第二型糖尿病小鼠血中的胰島素含量,1mg/kg以上的KS370G也可改善腹腔注射的葡萄糖耐受性,增加肝臟以及骨骼肌的肝糖含量。因此,KS370G的降血糖作用可能與增加胰島素含量以及葡萄糖利用率有關。在長期實驗中,我們也發現除了改善血糖與血脂,在Langendorff缺氧-再灌流的心臟模式中,給予KS370G的糖尿病小鼠具有比較大的冠狀動脈血流量以及比較小的缺氧-再灌流的心臟梗塞部分。更進一步的研究中顯示,至少有兩條訊息傳遞途徑與KS370G的保護作用有關:抗氧化酵素MnSOD的增加,以及肝臟中發炎因子TNFα和NFkB的減少。然而,更詳細的機轉還需要其他更多的實驗釐清。 心血管疾病,包括心臟肥大、心肌缺氧以及心衰竭,是造成糖尿病人死亡的最主要原因。在面臨壓力過載的情況時,心肌肥大是一個重要的代償機制,但是持續的使心臟過度工作可能導致代償失敗而引起心臟不正常的肥大,增加心衰竭發生的機率。在本研究中,我們也評估KS370G對於左心室肥大以及左心室功能的影響,我們利用腹部動脈結紮手術使心臟面臨壓力過載,在手術後的隔天開始給予一天一次口服1mg/kg的KS370G,手術八週後對肥大的心臟進行研究。我們發現長期口服給予KS370G能壓力過載引起的抑制心肌肥大,並且改善心臟功能,同時可降低血中心房利鈉素(atrial natriuretic peptide)和乳酸去氫酶(lactate dehydrogenase)的含量。此外長期口服給予也能顯著降低壓力過載引起的α-SMA表現增加以及ERK, AKT和GSK3β磷酸化增加的現象,減少心肌中膠原蛋白的囤積。 總而言之,KS370G可以保護飲食或是streptozocin引起的代謝異常,透過減少ERK, AKT和GSK3β的磷酸化而改善左心室功能和抑制心肌肥大,本研究顯示長期給予KS370G具有對抗糖尿病以及其併發症的保護潛力。 | zh_TW |
dc.description.abstract | Caffeic acid phenyl ester, a major component of propolis, is distributed wildly in nature and has anti-diabetic and cardiovascular protective effects. However, rapid decomposition by esterase leads to its low bioavailability in vivo. In this study, metabolic and cardiovascular effects of oral caffeic acid phenylethyl amide (KS370G), whose structure is similar to caffeic acid phenyl ester and resveratrol, were investigated in ICR mice.
Normal ICR, streptozotocin-induced diabetic (T1DM) and diet-induced diabetic (T2DM) mice were used in the study of antihyperglycemic actions of KS370G. Single oral administration of KS370G decreased the plasma glucose levels in both normal and diabetic mice. It was found that KS370G could stimulate the release of insulin in both normal and T2DM mice, and a dose of 1 mg per kg KS370G could significantly attenuate the increase of plasma glucose induced by an intraperitoneal glucose challenge test in normal and diabetic mice. Similar treatment with KS370G significantly increased glycogen content in both liver and skeletal muscle. Hence, the hypoglycemic effect of KS370G in normal and diabetic mice could be attributed to the stimulation of insulin release and the increase of glucose utilization. In chronic study, we also found that KS370G increased coronary flow and decreased infarct size after global ischemia-reperfusion in Langendorff perfused heart. Further study indicated that at least two pathways might be involved in such beneficial effects: the induction of the antioxidant protein MnSOD and the decrease of the proinflammatory cytokine TNFα and NFkB in the liver. However, the detailed mechanisms of KS370G need further studies. Cardiovascular disease, including hypertrophy, ischemia and heart failure, is the major cause of mortality in diabetic patients. Cardiac hypertrophy is an important compensatory mechanism in response to a pressure overload, but a sustained excessive cardiac workload may deteriorate to maladaptive hypertrophy and to increased risk of heart failure. In this study, we also evaluated the effects of KS370G on left ventricular hypertrophy and function. Abdominal aortic banding was performed by constricting the abdominal aorta and hypertrophied heart was studied at 8 weeks after the operation. After the operation, KS370G 1mg/kg (K1 group) was administered by oral gavage once a day. We found that chronic oral treatment with 1mg/kg KS370G inhibited cardiac hypertrophy and improved cardiac function induced by pressure overload. KS370G also decreased the plasma levels of atrial natriuretic peptide and lactate dehydrogenase. Besides, pressure overload-induced increase of α-SMA, phosphorylation of ERK, AKT and GSK3β were significantly reduced by chronic oral treatment with KS370G. We also found that chronic oral treatment with KS370G reduced cardiac collagen accumulation. In conclusion KS370G protected against diet or streptozocin-induced metabolic changes, improved left ventricular function and inhibited cardiac hypertrophy through the decrease of the phosphorylation of ERK, AKT and GSK3β in pressure-overload mice heart. This study demonstrated the protective potential of chronic treatment of KS370G against the metabolic consequences in diabetes mellitus. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:21:23Z (GMT). No. of bitstreams: 1 ntu-101-F94443019-1.pdf: 1221829 bytes, checksum: 51ced2407ea1d81223b80a0172849318 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書…………………….………………...…………….... i
誌謝………………………………………………………...…………… ii 縮寫表………………….................... iii 中文摘要……………………………………………………………….. v 英文摘要……………………………………………………………..... vii 第一章 研究背景 一、前言……………………………………………………………. 1 二、糖尿病的分類………………………………………………… 1 三、糖尿病的診斷………………………………………………… 2 四、糖尿病的治療及藥物………………………………………… 3 五、胰島素阻抗……………………………………………………. 5 六、心臟肥大………………………………………………………. 5 七、研究動機與目的………………………………………………. 7 第二章 單劑量KS370G的降血糖作用 一、序言……………………………………………………………. 8 二、實驗材料與方法………………………………………………. 9 三、實驗結果……………………………………………………... 11 四、討論與結論….……………………………………………….. 16 第三章 長期口服KS370G對第一型及第二型糖尿病的影響 一、序言…………………………………………………………... 17 二、實驗材料與方法……………………………………………... 18 三、實驗結果……………………………………………………... 21 四、討論與結論….……………………………………………….. 30 第四章 長期口服KS370G對壓力過載小鼠的心臟保護作用 一、序言…………………………………………………………... 32 二、實驗材料與方法……………………………………………... 33 三、實驗結果……………………………………………………... 36 四、討論與結論….……………………………………………….. 43 第五章 總結與展望…………………………………………………. 45 參考文獻………………………………………………………………. 46 | |
dc.language.iso | zh-TW | |
dc.title | KS370G對於小鼠代謝及心血管系統保護作用之研究 | zh_TW |
dc.title | Metabolic and Cardiovascular Effects of KS370G in ICR Mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顏茂雄,林正一,賴凌平,楊偉勛 | |
dc.subject.keyword | 多酚類,糖尿病,胰島素阻抗,壓力過載,左心室肥大, | zh_TW |
dc.subject.keyword | polyphenol,dabetes mellitus,insulin resistance,pressure-overload,left ventricular hypertrophy, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-06-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。