Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorHung-Yi Leeen
dc.contributor.author李泓逸zh_TW
dc.date.accessioned2021-05-17T09:15:12Z-
dc.date.available2014-08-01
dc.date.available2021-05-17T09:15:12Z-
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citation[1] A. Albers, S. Brudniok, J. Ottnad, C. Sauter, K. Sedchaicham, “Upper body of a new humanoid robot - The design of ARMAR III,” Proceedings of IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, pp. 308-313, 2006.
[2] H. Arisumi, J. R. Chardonnet, “Dynamic Lifting Motion of Humanoid Robots”, Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2661-2667, April 2007
[3] H. Arisumi, S. Miossec, J. R. Chardonnet, and K. Yokoi, “Dynamic Lifting by Whole Body Motion of Humanoid Robots,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 668-675, September 2008.
[4] S. R. Buss, “Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods,” Department of Mathematics, University of California, San Diego, pp. 1-19, 2009.
[5] T. F. Chan, and R. V. Dubey, “A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators,” IEEE Transaction On Robotics and Automation, Vol. 11, No. 2, pp. 286-292, 1995.
[6] Y. W. Chao, 'Mechatronic Design of a Biped Robt and Gait Coordination Control,' Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2010.
[7] T. H. Cheng, 'Humanoid Robot Intelligent Walking Control,' Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2009.
[8] A. G. Erdman, G. N. Sandor, and S. Kota, “Displacement and Velocity Analysis,” in Mechanism Design Analysis and Synthesis Volumn I, 4th ed., NJ, USA, Pearson Education, Inc., 2001, ch.3, pp. 119-187.
[9] D. H. Gottlieb, 'Robots and Topology,' Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, California, USA, Vol. 3, pp. 1689-1691, 1986.
[10] M. Griffis and J. Duffy, “A Forward Displacement Analysis of a Class of Stewart Platforms,” Journal of Robotic Systems, Vol. 6, pp. 703-720, 1989.
[11] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi, and H. Hirukawa, “Real-Time Planning of Humanoid Robot’s Gait for Force Controlled Manipulation”, IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 1, pp. 53-62, February 2007.
[12] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “Pushing Manipulation by Humanoid considering Two-Kinds of ZMPs,” Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 2, pp. 1627-1632, September 2003.
[13] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “Dynamics and Balance of a Humanoid Robot During Manipulation Tasks,” Proceedings of IEEE Transaction on Robotics, Vol. 22, No. 3, pp. 568-575, 2006.
[14] K. Harada, S. Kajita, K. Kaneko, and H. Kirukawa, “ZMP Analysis for ARM/Leg Coordination,” Proceedings of IEEE/RSJ International Conference of Intelligent Robots and Systems, Las Vegas, Nevada, Vol.1, pp. 75-81, October 2003.
[15] K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara, K. Kaneko, and H. Hirukawa, “A Humanoid Robot Carrying a Heavy Object,” Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 1727-1729, April 2005.
[16] M. Hayase and K. Ichikawa, 'Optimal Servo system Utilizing Future Value of Desired Function,' Transactions of SICE, Vol. 5, No.1, pp. 86-94, February 1969.
[17] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, 'The Development of Honda Humanoid Robot,' Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 2, pp. 1321-1326, May 1998.
[18] M. Hirose, Y. Haikawa, T. Takenaka, and H. K, 'Development of Humanoid Robot Asimo,' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop2, Vol. 13, pp. 1-6, October 2001.
[19] H. P. Huang and C. P. Liu, 'A Novel Trajectory Optimization and Workspace Boundary Singularity Solution for Industrial Robots,' Proceedings of Automation the Eighth International Conference on Automation Technology Conferences, Taichung, Taiwan, pp. 1-5, May 2005.
[20] W. Hui, S. Mei, and W. Zhongyu, “The Distributed Control System for Humanoid Robot BHBIP,” Proceedings of IEEE International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, pp. 731-734, Zhangjiajie, China, March 2012.
[21] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, M. Inaba, and H. Inoue, 'A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot,' Proceedings of Autonomous Robots, Vol. 12, No.1, pp. 71-82, January 2002.
[22] S. Kagami, J. Kuffner, K. Nishiwaki, K. Okada, M. Inaba, and H. Inoue, “Humanoid Arm Motion Planning using Stereo Vision and RRT Search,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, Vol.3, pp. 2167-2172,October 2003.
[23] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara and H. Hirukawa, “Biped Walking Pattern Generator Allowing Auxiliary ZMP Control,” Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2993-2999, October 2006.
[24] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, 'Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,' Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 2, pp. 1620-1626, September 2003.
[25] S. Kajita, O. Matsumoto, and M. Saigo, 'Real-Time 3d Walking Pattern Generation for a Biped Robot with Telescopic Legs,' Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, Republic of, Vol. 3, pp. 2299-2306, May 2001.
[26] N. Kanehira, T. U. Kawasaki, S. Ohta, T. Ismumi, T. Kawada, F. Kanehiro, S. Kajita, K. Kaneko, 'Design and Experiments of Advanced Leg Module (HRP-2L) for Humanoid Robot (HRP-2) Development,' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Vol.3, pp. 2455-2460, October 2002.
[27] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, 'Humanoid Robot HRP-3,' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 2471-2478, September 2008.
[28] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukaka, T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi, 'Humanoid Robot Hrp-2,' Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, Vol.2, pp. 1083-1090, April 2004.
[29] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K Akachi, T. Kawasaki, S. Ota and T. Isozumi, 'Design of Prototype Humanoid Robotics Platform for HRP,' Proceedings of IEEE/RSJ International Conference on Intellegrnt Robots and System, Lausanne, Switzerland, Vol.3, pp. 2431-2436, October 2002.
[30] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. i. Nakaoka, and S. Kajita, 'Cybernetic Human Hrp-4c,' Proceedings of IEEE-RAS International Conference on Humanoid Robots, Paris, France, pp. 7-14, December 2009.
[31] T. Katayama, T. Ohki, T. Inoue, and T. Kato, 'Design of an Optimal Controller for a Discrete-Time System Subject to Previewable Demand,' Proceedings of International Journal of Control, Vol. 41, No.3, pp. 677-699, March 1985.
[32] Y. Kuroki, M. Fujita, T. Ishida, K. i. Nagasaka, and J. i. Yamaguchi, 'A Small Biped Entertainment Robot Exploring Attractive Applications,' Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 1, pp. 471-476, September 2003.
[33] C. A. Klein, C. J. Caroline, and S. Ahmed, “A New Formulation of the Extended Jacobian Method and its Use in Mapping Algorithmic Singularities for Kinematically Redundant Manipulators,” Proceedings of IEEE Transactions. on Robotics and Automation, Vol. 11, No. 1, pp. 50-55, February 1995.
[34] H. Y. Lee and C. G. Liang, “Displacement Analysis of the General Spatial 7-Link 7R Mechanism,” Mechanism and Machine Theory, Vol. 23, No. 3, pp. 219-226, 1988.
[35] Y. Li, C. Li, and P. Chen, 'Research and Design of Control System for a Tracked Sar Robot under Coal Mine,' Proceedings of IEEE International Conference on Automation and Logistics, Shenyang, China, pp. 1957-1961, August 2009.
[36] A. Liegeois, “Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 7, No. 12, pp. 868-871, December 1977.
[37] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M. W. Naouar,“FPGAs in Industrial Control Applications,” IEEE Transactions on Industrial Infomatics, Vol. 7, No. 2, pp. 224-243, May 2011.
[38] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with Singularity Robustness for Robot Manipulator Control,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, pp. 163-171, 1986.
[39] Y. Nishida, T. Sonoda, and K. Ishii, “Jacobian Matrix Derived from Cross Product and its Application into High Power Joint Mechanism Analysis,” Journal of Bionic Engineering, Vol. 7, pp. 218–S223, 2010.
[40] K. Nishiwaki and S. Kagami, 'Online Walking Control System for Humanoids with Short Cycle Pattern Generation,' International Journal of Robotics Research, Vol. 28, No.6, pp. 729-742, June 2009.
[41] K. D. Nguyen, I. M. Chen, Z. Luo, S. H. Yeo, and H. B.-L. Duh, 'A Body Sensor Network for Tracking and Monitoring of Functional Arm Motion,' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 3862-3867, October 2009.
[42] Y. Nishihama, K. Inoue, T. Arai, and Y. Mae, “Mobile Manipulation of Humanoid Robots -Control Method for Accurate Manipulation,“ Proceedings of IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, Vol.2, pp. 1914-1919, October 2003.
[43] K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M. Inaba, and H. Inoue, 'Design and Development of Research Platform for Perception-Action Integration in Humanoid Robot: H6,' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, Vol. 3, pp. 1559-1564, October 2000.
[44] S. Nozawa, R. Ueda, Y. Kakiuchi, K. Okada, and M. Inaba, “A Full-Body Motion Control Method for a Humanoid Robot based on On-Line Estimation of the Operational Force of an Object with an Unknown Weight,” Proceedings of IEEE International Conference on Intelligent Robots and System, Taipei, Taiwan, pp. 2684-2691, October 2010.
[45] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. O. Lim and A. Takanishi, 'Development of a New Humanoid Robot WABIAN-2,' Proceedings of IEEE International Conference on Robotics and Automation, Beijing, China, pp. 76-81, October 2006.
[46] Y. Ohmura, and Y. Kuniyoshi, “Humanoid Robot Which can Lift a 30kg Box by Whole Body Contact and Tactile Feedback,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, San Diego, USA, pp. 1136-1141, October 2007.
[47] E. J. Ong and A. Hilton, “Learnt inverse kinematics for animation synthesis,” Graphical Models, Vol. 68, No. 5-6, pp. 472-483, 2006.
[48] C. Ott, C. Baumgartner, J. Mayr, M. Fuchs, R. Burger, D. Lee, O. Eiberger, A. Albu-Schaffer, M. Grebenstein and G. Hirzinger, 'Development of a Biped Robot With Torque Controlled Joints,' Proceedings of IEEE International Conference on Humanoid Robots, Nashville, TN, USA, pp. 167-173, December 2010.
[49] J. H. Park and K. D. Kim, 'Biped Robot Walking Using Gravity-Compensated Inverted Pendulum Mode and Computed Torque Control,' Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 4, pp. 3528-3533, May 1998.
[50] I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, 'Mechanical Design of the Humanoid Robot Platform, Hubo,' Proceedings of Advanced Robotics, Vol. 21, No.11, pp. 1305-1322, November 2007.
[51] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, 'Capture Point: A Step toward Humanoid Push Recovery,' Proceedings of IEEE-RAS International Conference on Humanoid Robots, Genoa, Italy, pp. 200-207, December 2006.
[52] S. K. Saha, “A Unified Approach to Space Robot Kinematics,” IEEE Transactions on Robotics and Automation, Vol. 12, N0. 3, pp. 401-405, June 1996.
[53] U. Saranl, A. Avc, and M. C. Ozturk, “A Modular Real-Time Fieldbus Architecture for Mobile Robotic Platforms,” IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 3, pp. 916-927, March 2011.
[54] M.O.F. Sarker, C. H. Kim, S. Back, and B. J. You, “An IEEE-1394 Based Real-time Robot Control System for Efficient Controlling of Humanoids,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1416-1421, October 2006.
[55] T. B. Sheridan, 'Three Models of Preview Control,' Proceedings of IEEE Transactions on Human Factors in Electronics, Vol. 7, No.2, pp. 91-102, June 1966.
[56] T. Sugihara and Y. Nakamura, “Enhancement of Boundary Condition Relaxation Method for 3D Hopping Motion Planning of Biped Robots,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USB, pp. 444-449, October 2007.
[57] A. Takanishi, H. Lim, M. Tsuda, and I. Kato, 'Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,' Proceedings of IEEE International Workshop on Intelligent Robots and Systems, Jsuchiura, Japan, Vol.1, pp. 323-330, July 1990.
[58] T. Takubo, K. Inoue, and T. Arai, “Pushing an Object Considering the Hand Reflect Forces by Humanoid Robot in Dynamic Walking,” Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 1706-1711, April 2005.
[59] K. Tchon, “Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators,” IEEE Transactions on Robotics, Vol. 24, No. 6, pp. 1440-1445, 2008.
[60] G. Tevatia, and S. Schaal, “Inverse Kinematics for Humanoid Robots,” Proceedings of IEEE International Conference Robotics and Automation, San Francisco, CA, USA, Vol.1, pp. 294-299, April 2000.
[61] M. Tomizuka and D. E. Rosenthal, 'On the Optimal Digital State Vector Feedback Controller with Integral and Preview Actions,' Proceedings of Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 101, No.3, pp. 172-178, January 1979.
[62] L. W. Tsai, Position Analysis of Serial Manipulators, in Robot Analysis: the mechanics of serial and parallel manipulators, New York: John Wiley & Sons, Inc., 1st ed, pp. 55-85, 1999.
[63] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, “Humanoid Motion Planning for Dual-Arm Manipulation and Re-Grasping Tasks,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, pp. 2464-2470, October 2009.
[64] M. Vukobratovic and B. Borovac, 'Zero-Moment Point — Thirty Five Years of Its Life,' Proceedings of International Journal of Humanoid Robotics, Vol. 1, No.1, pp. 157–173, March 2004.
[65] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least Squares Methods,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-16, No. 1, pp. 93-101, January 1986.
[66] R. J. Wang, 'Development and Application of Variable Stiffness Actuators,' Doctoral Dissertation, Department of Mechanical Engineering, National Taiwan University, 2012.
[67] B. Yamauchi, 'PackBot: A Versatile Platform for Military Robotics,' Proceedings of SPIE Unmanned Ground Vechicle Technology, Vol. 5422, April 2004.
[68] J. L. Yan and H. P. Huang, 'A Fast and Smooth Walking Pattern Generator of Biped Robot Using Jacobian Inverse Kinematics,' Proceedings of IEEE Workshop on Advanced Robotics and Its Social Impacts, Piscataway, NJ, USA, pp. 1-6, December 2007.
[69] J. Yang, T. Zhang, J. Song, H. Sun, G. Shi, and Y. Chen, 'Redundant Design of a Can Bus Testing and Communication System for Space Robot Arm,' Proceedings of International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, pp. 1894-1898, December 2008.
[70] E. Yoshida, M. Poirier, J.P. Laumond, O. Kanoun, F. Lamiraux, R. Alami, and K. Yokoi, “Regrasp Planning for Pivoting Manipulation by a Humanoid Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 2467-2472, May 2009.
[71] B.-J. You, M. Hwangbo, S.-O. Lee, S.-R. Oh, Y. D. Kwon, and S. Lim, 'Development of a Home Service Robot 'Issac',' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, Vol. 3, pp. 2630-2635, October 2003.
[72] S. W. Yu, 'Walking Pattern Analysis and Control of a Humanoid Robot,' Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2006.
[73] Z. Yu, Q. Huang, J. Li, Q. Shi, X. Chen, and K. Li, 'Distributed Control System for a Humanoid Robot,' Proceedings of IEEE International Conference on Mechatronics and Automation, Harbin, China, pp. 1166-1171, August 2007.
[74] http://global.kawada.jp/mechatronics/hrp2.html
[75] http://world.honda.com/ASIMO/
[76] http://www.bostondynamics.com/robot_petman.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6607-
dc.description.abstract在這篇論文裡,我們主要在試著控制我們實驗室所研發的整隻機器人。我們的目標是藉由控制機器人的重心和手腳末端點的位置來完成一些任務。
我們使用preview control來生出重心軌跡,接著把重心軌跡和末端點軌跡送進IK裡面做運算,運算過後就可以得到每一軸的軌跡。我們的IK運算了24個軸,其中手跟腳都各有六個軸。使用裝在機器人手腕和腳踝的六軸力規,機器人可以用三種不同的方式來移動物體。他可以使用推車推重物,用雙手抬起物體,或是使用一隻手提物體並且讓另外一隻手做其他的任務。在手腕的六軸力規可以量到物體的重量或是施於推車的力量。在腳踝的力規可以量到腳底板的反作用力,並且以此計算機器人的零力矩點。機器人可以利用這些資訊來調整重心的軌跡。
雖然我們一開始就讓機器人知道物體的位置和形狀,但機器人在一開始並不知道物體的重量。如果機器人可以辨識出物體的種類的話,他就可以自己選擇適當的方式移動物體,如此一來就更有機會融入我們的生活裡。
zh_TW
dc.description.abstractIn this thesis, we attempt to control the entire body of a humanoid robot that was developed by our laboratory. Our goal is to allow the humanoid robot to use its body to perform some tasks that are controlled by the Center of Gravity (COG) trajectory and the trajectory of the robot legs and arms.
Our study uses preview control to generate the robot’s COG trajectory and then the COG and end-effector trajectory are sent to the IK-solver to determine the trajectory of all of the joints. The IK-solver makes calculations for 24 joints, which include the six joints in each of the robot legs and arms. Using force sensors that was installed on the wrists and ankles, the robot can move objects in three different ways. It can push a cart to move a heavy object, use both arms to lift an object, and have one arm holding an object, while the other performs another task. The force sensors on the robot wrists can also measure the weight of the object or the force that is exerted on the cart. Similarly, the force sensor on its ankles can measure the reaction force of the footpad and calculate the Zero Moment Point (ZMP) of the robot. Based on this information, the robot is able to adjust the COG trajectory.
Although we have provided the robot with information about the shape and position of the object, the robot does not initially know the object’s weight. If the robot is able to recognize the shape of the object, it can choose a suitable method for moving it. This will allow the robot operate more easily in daily lift.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:12Z (GMT). No. of bitstreams: 1
ntu-101-R99522821-1.pdf: 8549952 bytes, checksum: 137aa6260f9811f7ed5f16b382cc5c68 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Content iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Development of Humanoid Robots 2
1.3 Interaction with the environment for humanoid robots 4
1.4 Thesis Organization 5
1.5 Contributions 7
Chapter 2 Kinematics and Dynamics 9
2.1 Introduction 9
2.2 Forward Kinematics 10
2.3 Inverse Kinematics 11
2.3.1 Conventional Jacobian Matrix 12
2.3.2 Fixed Jacobian 14
2.3.3 COG Jacobian 15
2.3.4 RDLS: Singularity Avoidance 17
2.3.5 WLN: Weighted Least-Norm Method 18
2.3.6 RWLN: Robust Weighted Least Norm Method 19
2.4 Walking Pattern Generation 20
2.4.1 Cart-Table Model with ZMP 21
2.4.2 Pattern Generation Using Preview Control 23
2.5 Summary 26
Chapter 3 Whole Body Motion Planning 28
3.1 Introduction 28
3.2 Trajectory Generation 28
3.3 Pushing an Object 31
3.4 Lifting an Object 36
3.4.1 Using Two Arms to Carry a Box 36
3.4.2 Using One Arm to Lift a Bag 39
3.5 Summary 42
Chapter 4 Whole Body Control System 44
4.1 Introduction 44
4.2 Mechanical Design 45
4.3 Mechatronic System 49
4.4 Whole Body Feedback Sensor 53
4.4.1 6-axis Force Sensor 54
4.4.2 Power Monitoring System 55
4.5 Summary 56
Chapter 5 Simulations and Experiments 58
5.1 Hardware Assembly 58
5.2 Software and Firmware Setting 59
5.3 Simulations 62
5.3.1 The First Simulations: Lift Object Using Two Arms 63
5.3.2 The Second Simulation: Lift an Object Using Right Arm 66
5.4 Experiments 69
5.4.1 The First Experiment: Push a Cart Using Two Arms 69
5.4.2 The Second Experiment: Lift an Object Using Two Arms 71
5.4.3 The Third Experiment: Lift an Object Using Right Arm 73
Chapter 6 Conclusions and Future Works 76
6.1 Conclusions 76
6.2 Future Works 77
References 80
dc.language.isoen
dc.title人型機器人之全身控制與規劃zh_TW
dc.titleWhole Body Control and Planning for Humanoid Robotsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李祖聖(Tzuu-Hseng Li),施慶隆(Ching-Long Shih)
dc.subject.keyword人形機器人,即時步態生成,零力矩點,全身運動規劃,逆向運動學,zh_TW
dc.subject.keywordHumanoid Robot,Real-time Walking Pattern Generation,ZMP,Whole Robot Motion Planning,Inverse Kinematics,en
dc.relation.page87
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf8.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved