請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
| dc.contributor.author | Yu-An Sheim | en |
| dc.contributor.author | 冼祐安 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:21:02Z | - |
| dc.date.available | 2017-06-29 | |
| dc.date.copyright | 2012-06-29 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-21 | |
| dc.identifier.citation | Artymiuk P., Blake C., Grace D., Oatley S., Phillips D., Sternberg M. (1979) Crystallographic studies of the dynamic properties of lysozyme.
Batas B., Chaudhuri J.B. (1996) Protein refolding at high concentration using size exclusion chromatography. Biotechnology and Bioengineering 50:16-23. Batas B., Jones H.R., Chaudhuri J.B. (1997) Studies of the hydrodynamic volume changes that occur during refolding of lysozyme using size-exclusion chromatography. Journal of Chromatography A 766:109-119. Batas B., Schiraldi C., Chaudhuri J.B. (1999) Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography. Journal of Biotechnology 68:149-158. Bellomo G., Mirabelli F., Dimonte D., Richelmi P., Thor H., Orrenius C., Orrenius S. (1987a) Formation and reduction of glutathione-protein mixed disulfides during oxidative stress: A study with isolated hepatocytes and menadione (2-methyl-1, 4-naphthoquinone). Biochemical Pharmacology 36:1313-1320. Bellomo G., Mirabelli F., DiMonte D., Richelmi P., Thor H., Orrenius C., Orrenius S. (1987b) Formation and reduction of glutathione-protein mixed disulfides during oxidative stress: A study with isolated hepatocytes and menadione (2-methyl-1, 4-naphthoquinone). Biochemical Pharmacology 36:1313-1320. Blake C., Koenig D., Mair G., North A., Phillips D., Sarma V. (1965) Structure of hen egg-white lysozyme: A three-dimensional fourier synthesis at 2 Å Resolution. Nature 206:757-761. Blake C., Mair G., North A., Phillips D., Sarma V.R. (1967) On the conformation of the hen egg-white lysozyme molecule. Proceedings of the Royal Society of London. Series B, Biological Sciences 167:365-377. Buck M., Boyd J., Redfield C., MacKenzie D.A., Jeenes D.J., Archer D.B., Dobson C.M. (1995) Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34:4041-4055. Cabrita L.D., Dobson C.M., Christodoulou J. (2010) Protein folding on the ribosome. Current Opinion in Structural Biology 20:33-45. Campbell F. (2009) Biochemistry Sixth ed. THOMSON Canfield R., EF Osserman, Beychok a.S., In J.H.S. (1974) Lysozyme. Academic Press, New York. Canfield R.E., Liu A.K. (1965) The disulfide bonds of egg white lysozyme (muramidase). Journal of Biological Chemistry 240:1997. Chang C.C., Yeh X.C., Lee H.T., Lin P.Y., Kan L.S. (2004) Refolding of lysozyme by quasistatic and direct dilution reaction paths: A first-order-like state transition. Physical Review E 70:011904. Clark E.D., Hevehan D., Szela S., Maachupalli Reddy J. (1998) Oxidative renaturation of hen egg white lysozyme. Folding vs aggregation. Biotechnology Progress 14:47-54. Cleland W.W. (1964) Dithiotheitol new protective reagent for SH groups . Biochemistry 3:480-&. Cleland W.W. (1982) Citation classic-Dithiothreitol, a new protective reagent for SH groups.Current Contents/Life Sciences:20-20. Creighton T., Goldenberg D. (1984) Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor* 1. Journal of Molecular Biology 179:497-526. Creighton T.E. (1986) [5] Disulfide bonds as probes of protein folding pathways. Methods in Enzymology 131:83-106. Creighton T.E. (1990) Protein folding. Biochemical Journal 270:1. Darnell J.E., (1990) Molecular cell biology. Distributed by W.H. Freeman, New York. David C., Foley S., Mavon C., Enescu M. (2008) Reductive unfolding of serum albumins uncovered by Raman spectroscopy. Biopolymers 89:623-634. DOI: 10.1002/bip.20972. De Graaf L.A. (2000) Denaturation of proteins from a non-food perspective. Journal of Biotechnology 79:299-306. Debnath S., Das D., Dutta S., Das P.K. (2010) Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles. Langmuir 26:4080-4086. Deneke S.M., Fanburg B.L. (1989) Regulation of cellular glutathione. American Journal of Physiology 257:L163-L173. Dill K.A., Shortle D. (1991) Denatured states of proteins. Annual Review of Biochemistry 60:795-825. Dinner A.R., Sali A., Smith L.J., Dobson C.M., Karplus M. (2000) Understanding protein folding via free-energy surfaces from theory and experiment.Trends in Biochemical Sciences 25:331-339. Dobson C.M. (2003) Protein folding and misfolding. Nature 426:884-890. Dong X.Y., Shi J.H., Sun Y. (2002) Cooperative effect of artificial chaperones and guanidinium chloride on lysozyme renaturation at high concentrations. Biotechnology Progress 18:663-665. Fahlgren A., Hammarström S., Danielsson Å., Hammarström M.L. (2003) Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clinical & Experimental Immunology 131:90-101. Fink A.L. (1998) Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Folding and Design 3:R9-R23. Fleming A. (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 93:306-317. Forman H.J., Dickinson D.A. (2003) Oxidative signaling and glutathione synthesis. Biofactors 17:1-12. Freydell E.J., van der Wielen L.A.M., Eppink M.H.M., Ottens M. (2010a) Size-exclusion chromatographic protein refolding: Fundamentals, modeling and operation. Journal of Chromatography A. Freydell E.J., Bulsink Y., van Hateren S., van der Wielen L., Eppink M., Ottens M. (2010b) Size-exclusion simulated moving bed chromatographic protein refolding. Chemical Engineering Science 65:4701-4713. Gao Y.G., Guan Y.X., Yao S.J., Cho M.G. (2002) Refolding of lysozyme at high concentration in batch and fedbatch operation. Korean Journal of Chemical Engineering 19:871-875. Garrett R. (2007) Biochemistry. Thomson Brooks/Cole, Belmont, CA. Ghezzi P. (2005) Review: Regulation of protein function by glutathionylation. Free Radical Research 39:573-580. Goldberg M.E., Rudolph R., Jaenicke R. (1991) A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry 30:2790-2797. Gu Z., Su Z., Janson J.C. (2001) Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding. Journal of Chromatography A 918:311-318. Hagen A.J., Hatton T.A., Wang D.I.C. (1990) Protein refolding in reversed micelles. Biotechnology and Bioengineering 35:955-965. Havel K., Pritts K., Wielgos T. (1999) Quantitation of oxidized and reduced glutathione in plasma by micellar electrokinetic capillary electrophoresis. Journal of Chromatography A 853:215-223. Hawkins H.C., de Nardi M., Freedman R.B. (1991) Redox properties and cross-linking of the dithiol/disulphide active sites of mammalian protein disulphide-isomerase. Biochemical journal 275:341. Hevehan D.L., De Bernardez Clark E. (1997) Oxidative renaturation of lysozyme at high concentrations. Biotechnology and Bioengineering 54:221-230. Hunter T. (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation an dsignaling. Cell 80:225-236. Ibrahim H.R., Aoki T., Pellegrini A. (2002) Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Current Pharmaceutical Design 8:671-693. Jaenicke R. (1974) Reassociation and reactivation of lactic dehydrogenase from the unfolded subunits. European Journal of Biochemistry 46:149-155. John R.J.S., Carpenter J.F., Randolph T.W. (2002) High pressure refolding of disulfide cross linked lysozyme aggregates: Thermodynamics and optimization. Biotechnology Progress 18:565-571. Jungbauer A., Kaar W., Schlegl R. (2004) Folding and refolding of proteins in chromatographic beds. Current Opinion in Biotechnology 15:487-494. Katoh S., Sezai Y., Yamaguchi T., Katoh Y., Yagi H., Nohara D. (1999) Refolding of enzymes in a fed-batch operation. Process Biochemistry 35:297-300. Katoh Y., Farshbaf M., Kurooka N., Nohara D., Katoh S. (2000) High yield refolding of lysozyme and carbonic anhydrase at high protein concentrations. Journal of Chemical Engineering of Japan 33:773-777. Kemp M., Go Y.M., Jones D.P. (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radical Biology and Medicine 44:921-937. Koti Ainavarapu S.R., . Wiita A.P., Dougan L., Uggerud E., . Fernandez J.M. (2008) Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. Journal of the American Chemical Society 130:6479-6487. Lai W., Middelberg A. (2002) The production of human papillomavirus type 16 L1 vaccine product from Escherichia coli inclusion bodies. Bioprocess and Biosystems Engineering 25:121-128. Lanckriet H., Middelberg A.P.J. (2004) Continuous chromatographic protein refolding. Journal of Chromatography A 1022:103-113. Ledward D., Tester R. (1994) Molecular transformations of proteinaceous foods during extrusion processing. Trends in Food Science & Technology 5:117-120. Lehninger A.L., Nelson D.L., Cox M.M. (2005) Lehninger Principles of Biochemistry Wh Freeman. Lenton K.J., Therriault H., Wagner J.R. (1999) Analysis of glutathione and glutathione disulfide in whole cells and mitochondria by postcolumn derivatization high-performance liquid chromatography with ortho-phthalaldehyde. Analytical Biochemistry 274:125-130. Li M., Su Z.G., Janson J.C. (2004) In vitro protein refolding by chromatographic procedures. Protein Expression and Purification 33:1-10. London J., Skrzynia C., Goldberg M.E. (1974) Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. European Journal of Biochemistry 47:409-415. Lu D., Liu Z. (2008) Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation. The Journal of Physical Chemistry B 112:15127-15133. Maachupalli Reddy J., Kelley B.D., Clark E.D.B. (1997) Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme. Biotechnology Progress 13:144-150. Maeda Y., Yamada H., Ueda T., Imoto T. (1996) Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea. Protein Engineering 9:461. Maeda Y., Koga H., Yamada H., Ueda T., Imoto T. (1995) Effective renaturation of reduced lysozyme by gentle removal of urea. Protein Engineering 8:201. Mamathambika B.S., Bardwell J.C. (2008) Disulfide-linked protein folding pathways. Annual Review of Cell and Developmental Biology 24:211-235. Marchal R., Chaboche D., Douillard R., Jeandet P. (2002) Influence of lysozyme treatments on champagne base wine foaming properties. Journal of Agricultural and Food Chemistry 50:1420-1428. Marden M., Griffon N., Poyart C. (1995) Oxygen delivery and autoxidation of hemoglobin. Transfusion Clinique et Biologique 2:473-480. Masschalck B., Michiels C.W. (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology 29:191-214. Mathews C.K. (2000) Biochemistry Benjamin Cummings,San Francisco,Calif. Matsubara M., Nohara D., Sakai T. (1992) ) Difference between guanidinium chloride and urea as denaturants of globular-proteins-The possibility of application to improve refolding processes.Chemical & Pharmaceutical Bulletin 40:550-552. Mckee, T. (2009) Biochemistry. Oxford University Press, New York. Meister A. (1988) Glutathione metabolism and its selective modification. The Journal of Biological Chemistry 263:17205-17208. Meister A., Anderson M.E. (1983) Glutathine. Annual Review of Biochemistry 52:711-760. Meyer A.J., Hell R. (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynthesis Research 86:435-457. Neurath H., Greenstein J.P., Putnam F.W., Erickson J.A. (1944) The chemistry of protein denaturation. Chemical Reviews 34:157-265. Nohara D., Matsubara M., Tano K., Sakai T. (1996) Design of optimum refolding solution by combination of reagents classified by specific function. Journal of Fermentation and Bioengineering 82:401-403. O’Brien E.P., Christodoulou J., Vendruscolo M., Dobson C.M. (2011) New scenarios of protein folding can occur on the ribosome. Journal of the American Chemical Society. Orsini G., Goldberg M.E., Skrzynia C. (1975) The renaturation of reduced polyalanyl chymotrypsinogen and chymotrypsinogen. European Journal of Biochemistry 59:433-440. Parsell D., Sauer R. (1989) The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. Journal of Biological Chemistry 264:7590. Phillips D.C. (1967a) The hen egg-white lysozyme molecule. Proceedings of the National Academy of Sciences of the United States of America 57:483-495. Phillips D.C. (1967b) Hen egg-white lysozyme molecule. Proceedings of the National Academy of Sciences of the United States of America 57:484-&. Rothman J.E., Kornberg R.D. (1986) Cell biology: An unfolding story of protein translocation. Nature 322:209-210. Rothwarf D.M., Scheraga H.A. (1992) Equilibrium and kinetic constants for the thiol-disulfide interchange reaction between glutathione and dithiothreitol. Proceedings of the National Academy of Sciences of the United States of America 89:7944. Ruegg U.T. and Rudinger J. (1977) Cleavage of disulfide bonds in proteins. Method Enzymol 47:111. Rupley J. (1967) The binding and cleavage by lysozyme of N-acetylglucosamine oligosaccharides. Proceedings of the Royal Society of London. Series B, Biological Sciences 167:416-428. Sabate R., de Groot N.S., Ventura S. (2010) Protein folding and aggregation in bacteria. Cellular and Molecular Life Sciences:1-21. Salazar O., Asenjo J.A. (2007) Enzymatic lysis of microbial cells. Biotechnology Letters 29:985-994. Salton M. (1952) Cell wall of Micrococcus lysodeikticus as the substrate of lysozyme. Nature 170:746. Schneider N., Werkmeister K., Becker C.M., Pischetsrieder M. (2011) Prevalence and stability of lysozyme in cheese. Food Chemistry. Shi N., Ye S., Alam A., Chen L., Jiang Y. (2006) Atomic structure of a Na+-and K+-conducting channel. Nature 440:570-574. Stipanuk M.H., Coloso R.M., Garcia R., Banks M.F. (1992) Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. The Journal of Nutrition 122:420. Szajewski R.P., Whitesides G.M. (1980) Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. Journal of the American Chemical Society 102:2011-2026. Tanford C. (1968) Protein denaturation. Advances in Protein Chemistry 23:121-282. Teipel J.W., Koshland Jr D.E. (1971) Kinetic aspects of conformational changes in proteins. I. Rate of regain of enzyme activity from denatured proteins. Biochemistry 10:792-798. Tolstoguzov V.B. (1993) Thermoplastic extrusion—the mechanism of the formation of extrudate structure and properties. Journal of the American Oil Chemists' Society 70:417-424. van den Berg B., Chung E.W., Robinson C.V., Dobson C.M. (1999) Characterisation of the dominant oxidative folding intermediate of hen lysozyme1. Journal of Molecular Biology 290:781-796. Wang C., Cheng Y. (2010) Urea-gradient protein refolding in size exclusion chromatography. Current Pharmaceutical Biotechnology 11:289-292. Wang S., Chang C., Peng M., Liu H. (2006) Effect of glutathione redox system on lysozyme refolding in size exclusion chromatography. Food and Bioproducts Processing 84:18-27. Wetlaufer D.B., Saxena V. (1970) Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry 9:5015-5023. Wilson D.N., Beckmann R. (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology. Wright E., Serpersu E.H. (2004) Isolation of aminoglycoside nucleotidyltransferase (2')-Ia from inclusion bodies as active, monomeric enzyme. Protein Expression and Purification 35:373-380. Yasuda M., Murakami Y., Sowa A., Ogino H., Ishikawa H. (1998) Effect of additives on refolding of a denatured protein. Biotechnology Progress 14:601-606. Yuryev V., Zasypkin D., Alexeyev V., Genin Y.V., Ezernitskaya M., Tolstoguzov V. (1990) Structure of protein texturates obtained by thermoplastic extrusion. Food/Nahrung 34:607-613. Zettlmeissl G., Rudolph R., Jaenicke R. (1979) Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18:5567-5571. 林煒泰. 2010 溶菌酶復性程序中氧化還原對之研究, 台灣大學碩士論文 林右晨. 2009 殘留之二硫代蘇糖醇與尿素復性之影響, 台灣大學碩士論文 周若莟. 2008 變性劑各成分在透析操作中移除方式的設計對溶菌酶復性效果之 影響, 台灣大學碩士論文 張棨翔. 2007二硫代蘇糖醇對溶菌酶變性及復性程序之影響, 台灣大學碩士論文 林昱祺. 2006 復性緩衝液中氧化還原對之動力學分析, 台灣大學碩士論文 張哲魁. 2005 以大小排組層析法進行蛋白質復性之研究, 台灣大學博士論文 張學凱. 2004 復性緩衝液中的成分對蛋白質復性之研究, 台灣大學碩士論文 廖彗媚. 2003 復性緩衝液中氧化還原反應對溶菌酶復性之研究, 台灣大學碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66076 | - |
| dc.description.abstract | 變性蛋白質的復性通常是利用不同方法移除變性成分進而使其恢復活性。傳統的直接稀釋法是利用大量的復性劑,稀釋變性成分對蛋白質的作用。本實驗則藉由簡單的氧化還原反應,即利用GSSG以四倍稀釋與變性劑中所殘餘的DTTRed反應降低DTTRed對蛋白質的破壞。由實驗結果顯示採用低倍率直接稀釋法亦可得由如同高倍率稀釋之效果,因而進一步探討因變性殘於的DTTRed與GSSG於復性環境中對復性之影響。
低倍率直接稀釋溶菌酶突破傳統高倍率直接稀釋的方法,在實驗中除了展示四倍稀釋對復性之高效率,更確立DTTRed、GSSG共同存在可提供良好的復性環境。由實驗結果檢視活性回復率受復性系統中的變因包括DTTRed與GSSG及氧化還原試劑對活性之影響。例如因DTTRed過量而無法呈現活性之原因歸為還原態DTT控制所致;並將所有操作溶菌酶濃度依其受復性劑成分影響所呈現的活性回復結果,區分為氧化還原控制區、氧化還原至聚集體過度區、聚集體控制區。於尿素2M可將氧化還原區之溶菌酶,添以適當的GSSG濃度復性可得80%之復性回收率。例如經四倍稀釋後於2M尿素中,最終溶菌酶濃度小於1.5g/L之活性回復率皆可達到80%以上。 聚集體控制區之溶菌酶因濃度過高,故於復性環境中加入尿素可有效地抑制聚集體產生而提升此區溶菌酶的復性回復率,例如3g/L的溶菌酶於2M尿素之環境活性回復率僅有60%,但於3M尿素中則可達70%以上。 | zh_TW |
| dc.description.abstract | Protein refolding is mainly carried out by eliminating denaturant through various methods. Direct dilution method is a traditional one by diluting the denaturant with a large amount of refolding buffer. However, this research added GSSG to react with carry-over DTTRed which was a crucial hinderence to successful protein refolding. The experimental results indicated that low dilution refolding method was as good as, if not better than, that of high dilution refolding method with this strategy. Therefore, this research further discussed the impacts of refolding environmental factors including GSSG and carry-over DTTRed.
According to the experiments, there was a relationship between refolding environments and lysozyme activity recovery depending on its concentrations. Namely, it was classified into three regions, including redox control region, transition region, and aggregation control region. For example, in redox control region, the activity of lysozyme up to final concentration of 1.5g/L would regain 80% in 2M urea condition with appropriate GSSG refolding buffer. In addition, lysozyme of higher concentration in aggregation control region usually needed the help of urea to minimize aggregation, and thus obtain better activity recovery. For instance, the activity recovery of the 3g/L final lysozyme concentration by 4-times dilution in 2M urea condition was merely 60%; nevertheless, the activity recovery could be enhanced to 70% in 3M urea. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:21:02Z (GMT). No. of bitstreams: 1 ntu-101-R98524016-1.pdf: 13089271 bytes, checksum: 34008c7146b9778f7fde9e6c69c82120 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 2 2-1 蛋白質功能與組成 2 2-1-1 胺基酸 3 2-1-2蛋白質結構 5 2-2 蛋白質間之作用力 9 2-3 溶菌酶 12 2-3-1溶菌酶簡介 12 2-3-2 溶菌酶的結構 14 2-3-3 溶菌酶的活性與偵測 16 2-4 蛋白質之變性 18 2-4 蛋白質之復性 21 2-4-1蛋白質復性機制 24 2-4-2蛋白質聚集體產生 27 2-5 蛋白質復性方法 30 2-5-1直接稀釋法(direct dilution) 30 2-5-2透析法(dialysis) 36 2-5-3 大小排阻層析法(size exclusion chromatography, SEC) 38 2-5-4 逆微胞法(reversed micelles) 42 2-6 常見蛋白質復性劑 44 2-6-1二硫代蘇糖醇(dithiothreitol,DTT) 44 2-6-2穀胱甘肽(glutathione,GSH) 45 2-6-3氧化態穀胱甘肽(Oxidized Glutathione,GSSG) 46 第三章 實驗裝置、藥品、步驟 47 3-1實驗裝置 47 3-2實驗藥品 47 3-3實驗步驟 49 3-3-1【實驗試劑備製步驟】 49 3-3-2【溶菌酶之活性測定】 50 3-3-3【96孔盤活性測試】 51 3-3-4【溶菌酶之變性】 52 3-3-5【殘餘活性之測量】 52 3-3-6【直接稀釋法復性溶菌酶隨時間變化】 53 3-3-7【直接稀釋法】 53 3-3-8【氧化態DTT校正曲線】 55 3-3-9【還原態DTT殘留測試】 55 第四章 微量盤式分析儀活性測試 56 4-1 微量盤式分析儀與分光光譜儀之比較 57 4-2 微量盤式分析儀對溶菌酶活性測試 58 第五章 直接稀釋法 68 5-1 實驗動機 68 5-2 溶菌酶之變性與殘餘活性 68 5-2-1代表符號 68 5-2-2實驗方法 69 5-2-3實驗結果與討論 69 5-3 復性時間 72 5-3-1 實驗方法 72 5-3-2 實驗結果與討論 72 5-4 測量殘留DTTred 74 5-4-1 實驗方法 74 5-4-2 氧化態DTTOxi濃度校正曲線 75 5-4-3 溶菌酶經變性24小時後殘留DTTred 77 5-5 還原態DTT對活性之影響 80 5-5-1代表符號 80 5-5-2實驗方法 80 5-5-3實驗結果與討論 81 第六章 還原態DTT與GSSG對溶菌酶四倍稀釋之復性 83 6-1 實驗動機 83 6-2 實驗方法 83 6-3 實驗結果與討論 86 6-3-1 復性環境中(DTTred)Refolding、(GSSG)Refolding與活性回復率之關係 86 6-3-2 不同濃度之溶菌酶(DTTred)Refolding、(GSSG)Refolding與活性回復率關係 88 6-3-3 探討復性環境之反應 95 6-3-4 反應過後各成分對活性之影響 98 6-3-5 氧化還原控制區與聚集體控制區之比較 110 第七章 尿素對溶菌酶復性的影響 112 7-1 實驗動機 112 7-2 實驗方法 112 7-3 實驗結果與討論 113 7-3-1 尿素對溶菌酶之復性 113 7-3-2 探討反應後尿素對溶菌酶復性之影響 118 7-3-3蛋白質復性之應用 130 第八章 結論 131 第九章 參考文獻 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二硫代蘇糖醇 | zh_TW |
| dc.subject | 溶菌酶 | zh_TW |
| dc.subject | 蛋白質復性 | zh_TW |
| dc.subject | 直接稀釋法 | zh_TW |
| dc.subject | direct dilution | en |
| dc.subject | DTT | en |
| dc.subject | lysozyme | en |
| dc.subject | protein refolding | en |
| dc.title | 低倍率之溶菌酶復性 | zh_TW |
| dc.title | Low Dilution Refolding for Lysozyme | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李振綱(Cheng-Kang Lee),王孟菊(Meng-Jiy Wang) | |
| dc.subject.keyword | 溶菌酶,蛋白質復性,直接稀釋法,二硫代蘇糖醇, | zh_TW |
| dc.subject.keyword | lysozyme,protein refolding,direct dilution,DTT, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 12.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
