請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66075
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林頌然 | |
dc.contributor.author | Chun-Chin Wang | en |
dc.contributor.author | 王俊欽 | zh_TW |
dc.date.accessioned | 2021-06-17T00:20:59Z | - |
dc.date.available | 2017-06-27 | |
dc.date.copyright | 2012-06-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-06-21 | |
dc.identifier.citation | [1] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy”, Science 248, 73-76 (1990)
[2] E. B. Brown, R. B. Campbell, Y. Tsuzuki, et al., “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy”, Nature Medicine 7, 864-868 (2001) [3] W. Supatto, D. Debarre, B. Moulia, et al., “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses”, The Proceedings of the National Academy of Sciences of the United States of America 102, 1047-1052 (2005) [4] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, et al., “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia”, The Proceedings of the National Academy of Sciences of the United States of America 104, 19494-19499 (2007) [5] P. Kim, M. Puoris'haag, D. Cote, et al., “In vivo confocal and multiphoton microendoscopy”, Journal of Biomedical Optics 13, 010501 (2008) [6] R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses” Nature Methods 6, 511-512 (2009) [7] W. L. Rice, D. L. Kaplan, and I. Georgakoudi, “Two-Photon Microscopy for Non-Invasive, Quantitative Monitoring of Stem Cell Differentiation”, Plos One 5, e10075 (2010) [8] C. C. Wang, F. C. Li, W. C. Lin, et al. “Early development of cutaneous cancer revealed by intravital nonlinear optical microscopy”, Applied Physics Letters 97, 113702 (2010) [9] M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, et al. “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans”, Nature 454, 784-788 (2008) [10] V. Nucciotti, C. Stringari, L. Sacconi, et al. “Probing myosin structural conformation in vivo by second-harmonic generation microscopy”, The Proceedings of the National Academy of Sciences of the United States of America 107, 7763-7768 (2010) [11] T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence”, Journal of Structural Biology 169, 36-44 (2010) [12] C. C. Wang, F. C. Li, R. J. Wu, et al. “Differentiation of normal and cancerous lung tissues by multiphoton imaging”, Journal of Biomedical Optics 14(4), 044034 (2009) [13] R. Cicchi, A. Crisci, A. Cosci, et al. “Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ”, Optics Express 18, 3840-3849 (2010) [14] S. J. Lin, S. H. Jee, C. J. Kuo, et al. “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging”, Optics Letters 31, 2756-2758 (2006) [15] J. A. Palero, H. S. de Bruijn, A. V. van den Heuvel, et al. “Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues”, Biophysical Journal 93, 992-1007 (2007) [16] W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences”, Nature Biotechnology 21, 1368-1376 (2003) [17] Barretto, R.P.J., B. Messerschmidt, and M.J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses”, Nature Methods 6, 511-512 (2009) [18] C. C. Wang, R. J. Wu, S. J. Lin, Y. F. Chen, and C. Y. Dong, “Label-free discrimination of normal and pulmonary cancer tissues using multiphoton fluorescence ratiometric microscopy”, Applied Physics Letters 97, 043706 (2010) [19] N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Debarre, P. Bourgine, A. Santos, N. Peyrieras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy”, Science 329, 967-971 (2010) [20] C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology”, Journal of Structural Biology 147, 19-30 (2004) [21] M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans”, Nature 454, 784-788 (2008) [22] S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation”, Journal of Biomedical Optics 14(1), 010504 (2009) [23] M. Born, and E. Wolf, “Principles of optics”, Cambridge University Press, Cambridge, UK (2002) [24] C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid,” Journal of Biomedical Optics 8(3), 450-459 (2003) [25] M. Goppert-Mayer, “Uber elementarakte mit zwei quantensprungen”, Annalen der Physik (9), 273-295 (1931) [26] P. A. Franken, A. E. Hill, C. W. Peter, et al. “Generation of optical harmonics”, Physical Review Letters (7), 118-119 (1961) [27] W. Kaiser, and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+”, Physical review letters (7), 229-231 (1961) [28] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy”, Science (248), 73-76 (1990) [29] Edited by A. Diaspro, “Confocal and two-photon microscopy”, John Wiley & Sons, NY, USA (2002) [30] P. N. Prasad “Introduction to biophotonics”, John Wiley & Sons, Hoboken, NJ, USA (2003) [31] R. W. Boyd, “Nonlinear optics”, Academic Press, Boston, MA, USA (2003) [32] H. A. Haus, “Waves and fields in optoelectronics”, Prentice-Hall, Englewood Cliffs, NJ, USA (1984) [33] P. Stoller, K. M. Reiser, P. M. Celliers, et al. “Polarization modulated second harmonic generation in collagen”, Biophysical Journal (82), 3330-3342 (2002) [34] R. R. Anderson, J. A. Parish, “The optics of human skin”, Journal of investigation dermatology (77), 13 (1981). [35] V. A. Hovhannisyan, P. J. Su, Y. F. Chen, et al. “Image heterogeneity correction in large-area, three dimensional multiphoton microscopy”, Optics Express 16, 5107-5117 (2008). [36] E. Brown, T. McKee, E. diTomaso, et al. “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation”, Nature Medicine 9(6), 796–800 (2003) [37] M. R. Looney, E. E. Thornton, D. Sen, et al. “Stabilized imaging of immune surveillance in the mouse lung”, Nature Methods 8(1), 91–96 (2011) [38] M. J. Farrar, I. M. Bernstein, D. H. Schlafer, et al. “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber”, Nature Methods 9(3), 297–302 (2012) [39] S. Speier, D. Nyqvist, M. Kohler, et al. “Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye”, Nature Protocols 3(8), 1278–1286 (2008) [40] D. Kedrin, B. Gligorijevic, J. Wyckoff, et al. “Intravital imaging of metastatic behavior through a mammary imaging window”, Nature Methods 5 (12), 1019–1021 (2008) [41] J. L. Li, C. C. Goh, J. L. Keeble, et al. “Intravital multiphoton imaging of immune responses in the mouse ear skin”, Nature Protocols 7(2), 221–234 (2012) [42] F. C. Li, C. C. Wang, S. J. Lin, et al. “Dorsal skin fold chamber for high resolution multiphoton imaging”, Optical and Quantum Electronics 37, 1439–1445 (2005) [43] Y. Liu, H. C. Chen, S. M. Yang, et al. “Visualization of hepatobiliary excretory function by intravital multiphoton microscopy”, Journal of Biomedical Optics 12(1), 014014 (2007) [44] F. C. Li, Y. Liu, G. T. Huang, et al. “In vivo dynamic metabolic imaging of obstructive cholestasis in mice”, American Journal of Physiology - Gastrointestinal and Liver Physiology 296, 1091–1097 (2009) [45] F. C. Li, G. T. Huang, C. J. Lin, et al. “Apical membrane rupture and backward bile flooding in acetaminophen-induced hepatocyte necrosis”, Cell Death and Disease 2, e183 (2011) [46] D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002”, CA: A Cancer Journal for Clinicians 55, 74-108 (2005) [47] K. Y. Chen, C. H. Chang, C. J. Yu, et al. “Distribution according to histologic type and outcome by gender and age group in Taiwanese patients with lung carcinoma”, Cancer 103, 2566-2574 (2005) [48] L. Fu, A. Jain, C. Cranfield, et al. “Three-dimensional nonlinear optical endoscopy”, Journal of Biomedical Optics 12 (4), 040501-1-3 (2007) [49] S. J. Lin, R. J. Wu, H. Y. Tan, et al. “Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy”, Optics Letters 30, 2275-2277 (2005) [50] S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein”, Biophysical Journal 82, 2811-2825 (2002) [51] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, et al. “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia”, The Proceedings of the National Academy of Sciences of the United States of America 104, 19494-19499 (2007) [52] J. Ahmedin, B. Freddie, M. C. Melissa, et al. “Global Cancer Statistics”, CA: A Cancer Journal for Clinicians 61(2), 69–90 (2011) [53] L. H. Kligman and R. Elenitsas, “Melanoma induction in a hairless mouse with short-term application of dimethylbenz[a]anthracene”, Melanoma Research 11, 319-324 (2001) [54] T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence”, Journal of Structural Biology 169, 36-44 (2010) [55] T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence”, Journal of Structural Biology 171, 189–196 (2010) [56] M. Seiki, “Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion”, Cancer Letters 194(1), 1–11 (2003) [57] T. M. Lin, W. T. Tsu, and C. J. Chen, “Mortality of hepatoma and cirrhosis of liver in Taiwan”, British Journal of Cancer 54, 969-976 (1986) [58] I. A.Sherman, and M. M. Fisher “Hepatic transport of fluorescent molecules: In Vivo studies using intravital TV microscopy”, Hepatology 6(3), 444-449 (1986). [59] O. Kunio, O. Toshio, O. Hiroshi, et al. “Natural history of hepatocellular carcinoma and prognosis in relation to treatment study of 850 patients”, Cancer 56(4), 918–928 (1985) [60] A. P. Venook “Regional strategies for managing hepatocellular carcinoma”, Oncology 14(3), 347-54 (2000) [61] Y. Seyama and N. Kokudo, “Assessment of liver function for safe hepatic resection”, Hepatology Research 39, 107-116 (2009) [62] K. Gotoh, T. Yamada, et al. “A Novel Image-Guided Surgery of Hepatocellular Carcinoma by Indocyanine Green Fluorescence Imaging Navigation”, Journal of Surgical Oncology 100, 75-79 (2009) [63] T. F. Weiss, Cellular biophysics, MIT Press, (1996) [64] J. B. Wyckoff, Y. Wang, E. Y. Lin, et al. “Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors”. Cancer Research 67, 2649-2656 (2007) [65] D. R. Rivera, C. M. Brown, D. G. Ouzounov, et al. “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue”, The Proceedings of the National Academy of Sciences of the United States of America, 17598-17603, (2011) [66] D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex”, Journal of Biomedical Optics, 16(10), 106014, (2011) [67] B. G. Saar, C. W. Freudiger, J. Reichman, et al. “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering”, Science 330, 1368-1370 (2010) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66075 | - |
dc.description.abstract | 在本研究第一部份,我們運用雙光子螢光和二倍頻顯微術於判別診斷正常、肺腺癌、以及鱗狀上皮細胞癌等肺臟組織。除了從型態上判別罹癌與否,我們也發展一項量化指標︰氧化還原比率。細胞氧化還原比率的值越低,代表細胞的代謝能力越強,這通常是癌細胞的特徵。研究結果顯示結合多光子造影和氧化還原比率指標能有效判別正常與罹癌的肺臟組織。
除了診斷活體外組織的型態特徵之外,第二部份的研究內容將此技術推廣到活體內癌症造影與分析。利用活體多光子顯微術與自體螢光對二倍頻的比例指標(MAFSI),可讓我們觀察到癌化的上皮細胞和細胞外基質的互動。隨著造影深度增加,正常和癌化皮膚組織兩者MAFSI的消長亦有所不同。既然癌化皮膚最後演變成鱗狀上皮細胞癌,此結果代表活體多光子顯微術可用於追蹤生理狀態的改變。 最後我們針對癌細胞侵襲和外滲等生理現象直接進行活體造影。所關注的課題包括:腫瘤微環境的動態資訊、轉移性結腸直腸癌細胞對肝膽代謝的影響、癌細胞和免疫細胞如白血球及庫氏細胞的互動。藉由活體多光子顯微術以及各種量化指標,我們對於癌化過程中對皮膚和肝臟生理狀況的影響有了更深入的了解,並希望在未來有助於改善癌症患者的治療與照顧。 | zh_TW |
dc.description.abstract | In the first part of this study, we performed two-photon excited autofluorescence and second harmonic generation microscopy for the distinction of normal, lung adenocarcinoma, and squamous cell carcinoma specimens. In addition to morphological distinction, we derived quantitative metrics of cellular redox ratios for cancer discrimination. The lower redox ratios in cancer specimens, indicating an increase in metabolic activity. These results show that the combination of morphological multiphoton imaging along with redox ratio indices can be used for the discrimination of normal and pulmonary cancer tissues.
After performing the capability of tissue characterization under ex vivo condition, the second segment of our work is to image and analyze normal and carcinogen treated skin tissues of nude mice in vivo. Using intravital images and the quantitative pixel to pixel ratiometric processing of multiphoton autofluorescence to second harmonic generation index (MAFSI), we can visualize the interaction between epithelial cells and extracellular matrix. We found that as the imaging depth increases, MAFSI has different distribution in normal and treated cutaneous specimens. Since the treated skin eventually became squamous cell carcinoma, our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by intravital multiphoton microscopy. In the final section, we have directly visualized the in vivo physiological process such as cancer invasion and extravsation on skin and liver of the mouse animal model. We focused on studying the dynamic information of the cancer microenvironment, the effects of the metastatic colon tumor cells on hepatobiliary metabolism, and the interaction of the tumor cells with immune-cells such as leukocyte and Kupffer cells. In this manner, we have gained a better understanding of the process of carcinogenesis and influence on normal physiology of the skin and liver. The improved understanding may lead to improved treatment and care strategies for cancer patients in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:20:59Z (GMT). No. of bitstreams: 1 ntu-101-D96222007-1.pdf: 21301445 bytes, checksum: 7174100bafb3dc0e50f7d71a2c6d0b6e (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝
摘要 I Abstract II Contents IV Figures VI Tables VIII Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Historical review 2 Chapter 2. Principles of Micoscopy 4 2.1. Basic concepts of microscopy 4 2.1.1 Point spread function 4 2.1.2 Numerical aperture and resolution 6 2.2. Nonlinear optics 9 2.2.1 Two-photon fluorescence 10 2.2.2 Second harmonic generation 14 2.2.3 Advantages of nonlinear optical microscopy 17 Chapter 3. Setup of Intravital Multiphoton Microscopy 19 3.1. Intravital multiphoton imaging system 19 3.1.1 Laser source 19 3.1.2 Optical components and detection 19 3.2. Chambers for intravital imaging 22 3.2.1 Dorsal skin-fold chamber 22 3.2.2 Intravital hepatic imaging chamber 24 Chapter 4. Ex vivo Studies of Lung Cancer Diagnosis 26 4.1. Sample preparation 26 4.2. Ex vivo normal and cancerous lung tissue imaging 27 4.3. Quantitative index: MAFSI and redox ratio mapping 29 Chapter 5. In vivo Applications of IMM for Cancer Research 35 5.1. Cancer research in dermatology 35 5.1.1 Basic knowledge of dermal structure 35 5.1.2 Animal model and preparation 36 5.1.3 Imaging and analysis of early cancer development 39 5.2. Cancer research in hepatology 49 5.2.1 Basic knowledge of hepatic function 49 5.2.2 Animal model and preparation 49 5.2.3 Hepatic metabolism model 55 5.2.4 Metabolic indices for early diagnosis of hepatocellular carcinoma 58 5.2.5 Immune response of cancer microenvironment 68 Chapter 6. Conclusion and Perspective 69 6.1. Conclusion 69 6.2. Perspective 69 Reference 71 Publication List 76 | |
dc.language.iso | en | |
dc.title | 活體多光子顯微術於癌症診斷之研究 | zh_TW |
dc.title | Intravital multiphoton microscopy for cancer diagnosis | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林?輝,林啟萬,李宣書,黃義侑 | |
dc.subject.keyword | 雙光子,二倍頻,活體顯微術,氧化還原比率,肝膽代謝,癌症, | zh_TW |
dc.subject.keyword | two-photon,second harmonic generation,intravital microscopy,redox ratio,hepatobiliary metabolism,cancer, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-06-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 20.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。