Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66048
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲(Wei-Chung Wang)
dc.contributor.authorMing-Sian Wuen
dc.contributor.author吳明賢zh_TW
dc.date.accessioned2021-06-17T00:20:08Z-
dc.date.available2014-06-29
dc.date.copyright2012-06-29
dc.date.issued2012
dc.date.submitted2012-06-25
dc.identifier.citation[1] Berger, M. P. F., King, J., and Wong, W. K. (2000). Minimax D-optimal Designs for Item Response Theory Models. Psychometrika. 65(3), 377-390.
[2] Chai-ead, N., Aungkulanon, P., Luangpaiboon, P. (2011). Bees and firefly algorithms for noisy non-linear optimisation problems. Prof. Int. Multiconference of Engineers and Computer Scientists 2011 2, 1449-1454.
[3] Dette, H. and Sahm, M. (1998). Minimax Optimal Designs in Nonlinear Regression Models. Statistica Sinica. 8, 1249-1264.
[4] Dette, H. and Wong, W. K. (1999). E-optimal Designs for the Michaelis-Menten Model. Statistics and Probability Letters. 44(4), 405-408.
[5] Eberhart, R. and Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory. Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth
International Symposium on. pages 39-43. IEEE.
[6] Fedorov, V. V. (1980). Convex design theory. Mathematische Operationsforschung und Statistik 11, 403-413.
[7] Geem, Z. W., Kim, J. H. and Loganathan, G. V. (2001). A new heuristic optimization: Harmony search. Simulation. 76(2), 60-68.
[8] Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press. ISBN 0262082136.
[9] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Turkey.
[10] King, J. and Wong, W. K. (2000). Minimax D-optimal Designs for the Logistic Model. Biometrics. 56(4), 1263-1267.
[11] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science. 220 (4598), 671-680.
[12] Murty, V. N. (1971). Minimax Designs. Journal of the American Statistical Association. 66, 319-320.
[13] Yang, X. S. (2008) Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK.
[14] Yang, X. S. and Deb, S. (2009). Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing (NaBIC 2009). IEEE Publication, USA. , 210-214.
[15] Yang, X. S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). SCI 284, 65-74.
[16] Yang, X. S. (2010). Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley & Sons.
[17] Wong, W. K. and Cook, R. D. (1993). Heteroscedastic G-optimal Designs. Journal of the Royal Statistical Society, Ser. B. 55(4), 871-880
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66048-
dc.description.abstract啟發式演算法被廣泛應用於解決許多最佳實驗設計問題。在本文中, 我們運用啟發式演算法求解四種最佳化試驗設計問題的例子。首先, 我們提出並說明這四個例子, 並簡述所使用於比較的演算法, 如蝙蝠演算法, 杜鵑鳥搜索演算法, 基因演算法, 模擬退火演算法, 人工蜂群演算法, 螢火蟲演算法, 音諧搜索演算法和粒子群優化演算法。介紹完後, 我們提出四種例子的比較數值結果並進一步作討論。最後, 從數值結果顯示與其他演算法相比較下, 杜鵑鳥搜索演算法和粒子群優化演算法有最佳的性能。這些數值研究僅針對此篇文章所提出的例
子, 可能並不適用於其他的例子。
zh_TW
dc.description.abstractMetaheuristic algorithms are widely used in solving many optimal experimental design problems. In this paper, we demonstrate the metaheuristic algorithms to construct four optimal experimental designs. First, we proposed the four examples for optimization design problems and presented the outlines of algorithm for comparison such as bat-inspired algorithm, cuckoo search, genetic algorithm, simulated annealing, artificial bee colony algorithm, firefly algorithm, harmony search and particle swarm optimization. After stated the algorithms, the numerical results of the comparison for the four examples are presented and discussed further. Finally, the conclusion suggested that cuckoo search and particle swarm optimization have the best performance in contrast with the other algorithms from the numerical results. The conclusions are drawn from the specific numerical studies and may not apply to other examples.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:20:08Z (GMT). No. of bitstreams: 1
ntu-101-R95221013-1.pdf: 877236 bytes, checksum: aa715290da824750ab244f57ac83ccf0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . .i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . iii
1 Introduction 1
2 Examples for Optimal Experimental Designs
2.1 Example 1: E-optimal designs for the Michaelis-Menten model . . . . . . . . . . 4
2.2 Example 2: Locally minimax single parameters optimal designs for the Double
Exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Example 3: A D-optimal design for the two-parameter logistic regression model 5
2.4 Example 4: A heteroscedastic minimax design for a polynomial model on the
prototype design interval X = [−1, 1] with various efficiency functions . . . . . . 6
3 Algorithms
3.1 Bat-Inspired Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Cuckoo Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Artificial Bee Colony Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Firefly Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Harmony Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Parcicle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Numerical Results and Discussions
4.1 Example 1: E-optimal designs for the Michaelis-Menten model . . . . . . . . . . 18
4.2 Example 2: Locally minimax single parameters optimal designs for the Double
Exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Hypothesis of symmetric for Double Exponential model . . . . . . . . . . 23
4.2.2 Hypothesis of non-symmetric for Double Exponential model . . . . . . . 27
4.3 Example 3: A D-optimal design for the two-parameter logistic regression model. 30
4.3.1 A locally D-optimal design for the two-parameter logistic regression model
when we have single point for the two parameters. . . . . . . . . . . . . . 30
4.3.2 A minimax D-optimal design for the two-parameter logistic regression
model when we have plausible ranges for the two parameters. . . . . . . 34
4.4 Example 4: A heteroscedastic minimax design for a polynomial model on the
prototype design interval X = [−1, 1] with various efficiency functions. . . . . . 40
5 Conclusions 45
dc.language.isozh-TW
dc.subject螢火蟲演算法zh_TW
dc.subject杜鵑鳥搜索演算法zh_TW
dc.subject音諧搜索演算法zh_TW
dc.subject粒子群優化演算法zh_TW
dc.subject啟發式演算法zh_TW
dc.subject基因演算法zh_TW
dc.subject蝙蝠演算法zh_TW
dc.subject模擬退火演算法zh_TW
dc.subject人工蜂群演算法zh_TW
dc.subjectharmony searchen
dc.subjectparticle swarm optimizationen
dc.subjectfirefly algorithmen
dc.subjectartificial bee colony algorithmen
dc.subjectsimulated annealingen
dc.subjectgenetic algorithmen
dc.subjectcuckoo searchen
dc.subjectbat-inspired algorithmen
dc.subjectMetaheuristic algorithmen
dc.title使用啟發式演算法求解最佳化實驗設計zh_TW
dc.titleConstructing Optimal Experimental Designs by Meta-heuristic Algorithmsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞彬(Ray-Bing Chen),蔡碧紋(Pi-Wen Tsai)
dc.subject.keyword啟發式演算法,蝙蝠演算法,杜鵑鳥搜索演算法,基因演算法,模擬退火演算法,人工蜂群演算法,螢火蟲演算法,音諧搜索演算法,粒子群優化演算法,zh_TW
dc.subject.keywordMetaheuristic algorithm,bat-inspired algorithm,cuckoo search,genetic algorithm,simulated annealing,artificial bee colony algorithm,firefly algorithm,harmony search,particle swarm optimization,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2012-06-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
856.68 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved