請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66044
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 隋中興(Chung-Hsiung Sui) | |
dc.contributor.author | Mu-Hua Chien | en |
dc.contributor.author | 簡睦樺 | zh_TW |
dc.date.accessioned | 2021-06-17T00:20:01Z | - |
dc.date.available | 2013-06-29 | |
dc.date.copyright | 2012-06-29 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-06-25 | |
dc.identifier.citation | Alexander, M. A., and C. Deser, A mechanism for the recurrence of wintertime midlatitude
sst anomalies, 1995. Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, The atmospheric bridge: The influence of enso teleconnections on air-sea interaction over the global oceans, 2002. Amante, C., and B. Eakins, Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis, Tech. rep., NOAA Technical Memorandum NESDIS NGDC- 24,19pp, 2009. Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World ocean atlas 2009, volume 2: Salinity, Tech. rep., S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, D.C., 2010. Cai, M., E. Kalnay, and Z. Toth, Bred vectors of the zebiak-cane model and their potential application to enso predictions, Journal of Climate, 16, 40--56--, 2003. Cayan, D. R., Latent and sensible heat-flux anomalies over the northern oceans - driving the sea-surface temperature, Journal of Physical Oceanography, 22, 859--881--, 1992. Colling, A., and O. U. O. C. Team., Ocean circulation, 2001. Cushman-Roisin, B., J.-M. Beckers, and ebrary Inc., Introduction to geophysical fluid dynamics physical and numerical aspects, Academic Press, Waltham, Mass., 2011. Dietrich, D. E., and D. S. Ko, A semi-collocated ocean model-based on the SOMS approach, Int. J. Numer. Methods Fluids, 19, 1103--1113, 1994. Dietrich, D. E., and C. A. Lin, Effects of hydrostatic approximation and resolution on the simulation of convective adjustment, Tellus, 54(A), 34--43, 2002. Dietrich, D. E., C. A. Lin, A. Mestas-Nunez, and D. S. Ko, A high resolution numerical study of gulf of Mexico fronts and eddies, Meteorol. Atmos. Phys., 64, 187--201, 1997. Dietrich, D. E., A. Mehra, R. L. Haney, M. J. Bowman, and Y. H. Tseng, Dissipation effects in modeling the north atlantic ocean, Geophys. Res. Lett., 31, L05,302, 2004. Dietrich, D. E., Y. H. Tseng, R. Medina, S. A. Piacsek, M. Liste, M. Olabarrieta, M. J. Bowman, and A. Mehra, Mediterranean overflow water (mow) simulation using a coupled multiple-grid mediterranean sea/north atlantic ocean model, Journal of Geophysical Research-Oceans, 113, --, 2008. Ducet, N., and P. Y. Le Traon, A comparison of surface eddy kinetic energy and reynolds stresses in the gulf stream and the kuroshio current systems from merged topex/poseidon and ers-1/2 altimetric data, Journal of Geophysical Research-Oceans, 106, 16,603-- 16,622--, 2001. Ferziger, J. H., and M. Peri, Computational methods for fluid dynamics, 2002. Frankignoul, C., P. Muller, and E. Zorita, A simple model of the decadal response of the ocean to stochastic wind forcing, Journal of Physical Oceanography, 27, 1533--1546--, 1997. Hellerman, S., and M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093--1104, 1983. Hoffman, M. J., E. Kalnay, J. A. Carton, and S. C. Yang, Use of breeding to detect and explain instabilities in the global ocean, Geophysical Research Letters, 36, --, 2009. Johnson, G. C., and D. W. Moore, The pacific subsurface countercurrents and an inertial model, 1997. Johnson, G. C., M. J. McPhaden, G. D. Rowe, and K. E. McTaggart, Upper equatorial pacific ocean current and salinity variability during the 1996-1998 el nino-la nina cycle, J. Geophys. Res., 105, 1037--1053--, 2000. Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y. O. Kwon, and M. F. Cronin, Western boundary currents and frontal air-sea interaction: Gulf stream and kuroshio extension, Journal of Climate, 23, 5644--5667--, 2010. Kwon, Y. O., and C. Deser, North pacific decadal variability in the community climate system model version 2, Journal of Climate, 20, 2416--2433--, 2007. Kwon, Y. O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, Role of the gulf stream and kuroshio-oyashio systems in large-scale atmosphere-ocean interaction: A review, Journal of Climate, 23, 3249--3281--, 2010. Levine, E. R., and W. B. White, Bathymetric influences upon the character of north pacific fronts, 1976-1980, 1983. Lindzen, R. S., Instability of plane parallel shear-flow (toward a mechanistic picture of how it works), 1988. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World ocean atlas 2009, volume 1: Temperature, Tech. rep., S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 2010. Lorenz, E. N., Available potential energy and the maintenance of the general circulation, 1955. Madala, R. V., Efficient direct solver for separable and non-separable elliptic equations, Monthly Weather Review, 106, 1735--1741--, 1978. Maltrud, M. E., and J. L. McClean, An eddy resolving global 1/10 degrees ocean simulation, Ocean Modelling, 8, 31--54--, 2005. Masumoto, Y., et al., A fifty-year eddy-resolving simulation of the world ocean, preliminary outcomes of ofes (ogcm for the earth simulator), 1, 35--56--, 2004. Mitsudera, H., T. Waseda, Y. Yoshikawa, and B. Taguchi, Anticyclonic eddies and kuroshio meander formation, 28, 2025--2028--, 2001. Nakamura, H., and A. Shimpo, Seasonal variations in the southern hemisphere storm tracks and jet streams as revealed in a reanalysis dataset, Journal of Climate, 17, 1828- -1844--, 2004. Niiler, P. P., N. A. Maximenko, G. G. Panteleev, T. Yamagata, and D. B. Olson, Nearsurface dynamical structure of the kuroshio extension, 108, --, 2003. Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, Decadal variability in the kuroshio-oyashio extension simulated in an eddy-resolving ogcm, Journal of Climate, 19, 1970--1989--, 2006. Orlanski, I., Instability of frontal waves, 25, 178--&--, 1968. Pacanowski, R. C., and S. G. H. Philander, Parameterization of vertical mixing in numerical models of tropical ocean, J. Phys. Oceanogr., 11, 1443--1451, 1981. Pena, M., and E. Kalnay, Separating fast and slow modes in coupled chaotic systems, Nonlinear Processes in Geophysics, 11, 319--327--, 2004. Phillips, N. A., Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model, Tellus, 6, 273--286, 1954. Pierce, D. W., T. P. Barnett, N. Schneider, R. Saravanan, D. Dommenget, and M. Latif, The role of ocean dynamics in producing decadal climate variability in the north pacific, Climate Dynamics, 18, 51--70--, 2001. Qiu, B., Interannual variability of the kuroshio extension system and its impact on the wintertime sst field, Journal of Physical Oceanography, 30, 1486--1502--, 2000. Qiu, B., and S. M. Chen, Variability of the kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales, Journal of Physical Oceanography, 35, 2090- -2103--, 2005. Risien, C. M., and D. B. Chelton, A global climatology of surface wind and wind stress fields from eight years of quikscat scatterometer data, Journal of Physical Oceanography, 38, 2379--2413--, 2008. Smagorinsky, J., The beginnings of numerical weather prediction and general-circulation modeling - early recollections, Advances in Geophysics, 25, 3--37--, 1983. Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, Numerical simulation of the north atlantic ocean at 1/10 degrees, 2000. Thompson, K. R., and E. Demirov, Skewness of sea level variability of the world's oceans, Journal of Geophysical Research-Oceans, 111, --, 2006. Toth, Z., and E. Kalnay, Ensemble forecasting at nmc - the generation of perturbations, Bulletin of the American Meteorological Society, 74, 2317--2330--, 1993. Toth, Z., E. Kalnay, S. M. Tracton, R. Wobus, and J. Irwin, A synoptic evaluation of the ncep ensemble, Weather and Forecasting, 12, 140--153--, 1997. Tseng, Y. H., and M. H. Chien, Parallel domain-decomposed taiwan multi-scale community ocean model (pd-timcom), Computers & Fluids, 45, 77--83, 2011. Tseng, Y. H., and C. Ding, Efficient parallel i/o in community atmosphere model (cam), 2008. Tseng, Y. H., D. E. Dietrich, and J. H. Ferziger, Regional circulation of the monterey bay region: Hydrostatic versus nonhydrostatic modeling, Journal of Geophysical Research- Oceans, 110, --, 2005. Vandervorst, H. A., Bi-cgstab - a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear-systems, 1992. Wallace, J. M., and P. V. Hobbs, Atmospheric science : an introductory survey, Elsevier Academic Press, Burlington, MA, 2006. Wright, D. G., An equation of state for use in ocean models: Eckart's formula revisited, 1997. Wu, L. X., and Z. Y. Liu, North atlantic decadal variability: Air-sea coupling, oceanic memory, and potential northern hemisphere resonance, Journal of Climate, 18, 331-- 349--, 2005. Xue, H. J., J. M. Bane, and L. M. Goodman, Modification of the gulf-stream through strong air-sea interactions in winter - observations and numerical simulations, Journal of Physical Oceanography, 25, 533--557--, 1995. Yang, S. C., M. Cai, E. Kalnay, M. Rienecker, G. Yuan, and Z. Toth, Enso bred vectors in coupled ocean-atmosphere general circulation models, Journal of Climate, 19, 1422-- 1436--, 2006a. Yang, S. C., E. Kalnay, M. Cai, and M. M. Rienecker, Bred vectors and tropical pacific forecast errors in the nasa coupled general circulation model, Monthly Weather Review, 136, 1305--1326--, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66044 | - |
dc.description.abstract | 由於在黑潮和親潮延伸流域(Kuroshio-Oyashio Extension)其複雜的鋒面結構內蘊含許多可用的潛在位能,這些潛在位能可以藉由不穩定的機制來進行能量轉換。而這些能量會改變黑潮區域的動量和熱量的傳送而進一步影響大氣。觀測的資料中顯示此區域的海表面高度和海平面溫度的距平值震盪的週期從季內震盪到年代際震盪。為了更近一步了解不穩定性和黑潮的關係,本研究中利用日前研發採用高效能平行化方法之台灣多重尺度全球海洋環流模式,討論在準平衡狀態下的全球及區域結果。此外,本模式可以完整模擬中尺度海洋的現象,對黑潮親潮的交互作用也有和觀測一致的表現,因此本篇研究中除了利用傳統定義距平場的方式來討論模式中的渦流結構,也利用培養法(Breeding method)來探討黑潮親潮流域不穩定度的發展性。利用在模式中加入適當之培養向量(Bred vector),並藉由反覆重置培養向量疊加在控制背景場中,透過非線性模式及不同尺度不穩定發展的特性,自然地將模式內之快速發展模保留下來,並濾除不相關的雜訊。從實驗結果的主成分分析可以知道不穩定發生的密集區域在日本外海,也知道黑潮區域的不穩定性主要來自渦流和平均流交互作用所產生的能量轉換,以及藉由垂直密度的差異將可用位能釋放所產生的能量轉換有關。 | zh_TW |
dc.description.abstract | The Kuroshio-Oyashio Extension (KOE) involves significant barotropic and baroclinic energy conversion due to complex frontal instability. The energy conversion changes the sea surface momentum and heat flux, and further affects the local air-sea interaction. The observed sea surface height and sea surface temperature anomalies exhibit considerable variances from interannual to decadal time scales in the KOE region. To investigate the link between energy conversion and Kuroshio Extension, we simulated the KOE variability using an eddy-permitting global ocean circulation model, based on the recently-developed TaIwan Multi-scale Community Ocean Model (TIMCOM) with parallel implement. The model fully resolved the mesoscale features in the global framework, including the quasi-steady solution and the Kuroshio-Oyashio interaction . We further applied the breeding method to investigate the KOE flow instability. The approach added the rescaled bred vector into the control experiment to explore the development of fast growing mode in the KOE region. We applied the Empirical orthogonal function to find the principle component of KOE instability around east coastal of Japan, and the energy conversion in KOE region is result from the interaction of mean flow and the eddy as well as the available potential energy released form vertical density perturbation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:20:01Z (GMT). No. of bitstreams: 1 ntu-101-R99229010-1.pdf: 28787358 bytes, checksum: c87d7451515b207ee1896a3b324b3fc2 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝.............. ................................... i
中文摘要.............................................. iii 英文摘要................................................ v 第一章前言.............................................. 1 第二章模式與方法......................................... 9 2.1 模式介紹............................................ 9 2.1.1 數學方法及物理參數化介紹............................. 9 2.1.2 初始和邊界條件介紹.................................................... 10 2.1.3 平行化設定介紹.................................................... 10 2.2 培養法.................................................... 11 2.2.1 培養法實驗流程.................................... 11 2.2.2 培養法的診斷方程................................... 12 2.3 實驗進行方式........................................ 13 第三章模式準平衡態結果.................................... 19 3.1 準平衡態診斷..................................................... 19 3.2 全球尺度環流結構..................................... 19 3.2.1 緯向翻轉流函數..................................... 19 3.2.2 全球海表面溫度..................................... 20 3.2.3 全球海表面高度...................................... 20 3.3 全球主要洋流特徵...................................... 21 3.3.1 太平洋赤道洋流...................................... 21 3.3.2 墨西哥灣流......................................... 21 3.3.3 黑潮.............................................. 22 第四章黑潮親潮延伸流域動力不穩定性............................ 35 4.1 渦流場形成的原因...................................... 35 4.2 模式中利用距平值所計算的渦流............................. 36 4.2.1 模式中平均場動能和渦流動能............................. 36 4.2.2 模式中所估計的能量轉換................................ 36 4.3 利用培養法實驗的結果................................... 36 4.3.1 初始培養向量和能量方程式.............................. 37 4.3.2 培養動能成長效率..................................... 37 4.3.3 背景動能場及水平能量轉換.............................. 38 4.3.4 垂直培養密度和垂直能量轉換............................. 39 4.3.5 結果比較........................................... 39 4.4 方法比較............................................. 40 4.4.1 控制場和擾動場...................................... 40 4.4.2 渦流的發展.......................................... 40 4.4.3 硬體資源........................................... 40 第五章結論................................................ 61 參考文獻.................................................. 63 | |
dc.language.iso | zh-TW | |
dc.title | 利用海洋環流模式探討黑潮親潮延伸流域之能量轉換過程 | zh_TW |
dc.title | Investigating Energy Conversion in Kuroshio-Oyashio Extension by Ocean General Circulation Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 曾于恒(Yu-Heng Tseng) | |
dc.contributor.oralexamcommittee | 楊舒芝(Shu-Chih Yang),郭鴻基(Hung-Chi Kuo),詹森(Sen Jan) | |
dc.subject.keyword | 全球海洋環流模式,培養法,西方邊界流,黑潮親潮延伸流域,不穩定分析, | zh_TW |
dc.subject.keyword | Ocean general circulation model,Breeding method,West boundary current,Kuroshio-Oyahshio Extension,Instability diagnostic, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-06-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 28.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。