請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66041完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王振男(Jenn-Nan Wang) | |
| dc.contributor.author | Peng-Fei Yao | en |
| dc.contributor.author | 姚鵬飛 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:19:54Z | - |
| dc.date.available | 2012-07-18 | |
| dc.date.copyright | 2012-07-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2012-06-25 | |
| dc.identifier.citation | [1] C.L.LIN, G. UHLMANN. and J.N.WANG, Optimal three-ball inequalities
and quantitative uniqueness for the Stokes system, Discrete Contim. Dyn. Syst. 28 (2010), 1273-1290. [2] Regbaoui, Rachid, Strong unique continuation for stokes equations, Comm. Partial Differential Equations. 24 (1999), 1891-1902. MR 1708112 [3] C.L.LIN, G. UHLMANN. and J.N.WANG, Optimal three-ball inequalities and quantitative uniqueness for the Lam’e system with Lipschitz coefficients, Duke Math. J. Volume 155, Number 1 (2010), 189-204. [4] L.H ‥ ORMANDER, ,The Analysis of Linear Partial Differential Operators, III, Grundlehren Math. Wiss. 274, Springer, Berlin, (1985). MR 0781536 [5] Graeme W. Milton, The Theory of Composites of chaper 2, Cambridge Monographs on Applied and Computational Mathematics. 6 (2009), 22- 27. [6] Fung, Y. C., Foundations of Solid Mechanics, Upper Saddle River, New Jersey: Prentice- Hall. xiv + 525 pp. (1965), 99-103. [7] Timoshenko, S. and S. Woinowsky-Krieger , Theory of Plates and Shells, New York: McGraw-Hill. xiv + 580 pp. (1959), ISBN 0-07-064779-8. [8] Ciarlet, P. G. , Mathematical Elasticity. Volume II. Theory of Plates, Amsterdam: North-Holland Publishing Co. lxiv + 497 pp. (1997), ISBN 0-444-82570-3. [9] C.L.LIN, G. UHLMANN. and J.N.WANG, Quantitative uniqueness for second order elliptic operators with strongly singular coefficients , to appear in Rev. Mat. Iberoamericana, preprint, arXiv:0802.1983v1[math.AP] | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66041 | - |
| dc.description.abstract | 在這篇論文中,我們將要討論的是二維平板方程式的唯一延拓性而方程式的係數是Lipschitz,而我們的想法是引用彈性方程式的唯一延拓性,在加上我們本身所加入的條件,因此我們可以利用彈性方程式來證明平板方程式也有同樣的性質。 | zh_TW |
| dc.description.abstract | In this paper we study the solution of plate equation with Lipschitz coefficients in two dimensions. Our main result is the bound on the vanishing order of a nontrivial solution satisfying the plate equation, which immediately implies the srtong unique continuation property(SUCP). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:19:54Z (GMT). No. of bitstreams: 1 ntu-100-R99221015-1.pdf: 313525 bytes, checksum: 1642ce5ec5bea5fa11bace6e0b658607 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Acknowledgement i
Abstract ii 1 Introduction 1 1.1 Relation of two equations . . . . . . . . . . . . . . . . . . . . 1 1.2 Summary of two equations . . . . . . . . . . . . . . . . . . . . 6 2 Main Results 7 2.1 Three-ball inequalities . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Proof the SUCP of plate equation . . . . . . . . . . . . . . . . 9 3 Carleman estimates 12 3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Carleman estimates . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Proof of Theorem 2.1 and Theorem 2.2 14 5 References 23 | |
| dc.language.iso | en | |
| dc.subject | Carleman 估計法 | zh_TW |
| dc.subject | 局部各向同性 | zh_TW |
| dc.subject | 唯一延拓性 | zh_TW |
| dc.subject | 三球不等式 | zh_TW |
| dc.subject | three-ball inequalities | en |
| dc.subject | SUCP | en |
| dc.subject | local isotropy | en |
| dc.title | 平板方程式的唯一延拓性 | zh_TW |
| dc.title | The Strong Unique Continuation Property of The Plate Equation with Lipschitz coefficients | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 夏俊雄(Chun-Hsiung Hsia),陳俊全(Chiun-Chuan Chen),林景隆(Ching-Lung Lin) | |
| dc.subject.keyword | 局部各向同性,唯一延拓性,Carleman 估計法,三球不等式, | zh_TW |
| dc.subject.keyword | local isotropy,SUCP,three-ball inequalities, | en |
| dc.relation.page | 23 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 306.18 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
