Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6603
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡明道(Ming-Daw Tsai)
dc.contributor.authorChia-Chi Huangen
dc.contributor.author黃家琦zh_TW
dc.date.accessioned2021-05-17T09:15:09Z-
dc.date.available2017-08-16
dc.date.available2021-05-17T09:15:09Z-
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citation1. Adhikari, A., M. Xu, and Z. J. Chen. 2007. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214-26.
2. Ahn, J., and C. Prives. 2002. Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation. J Biol Chem 277:48418-26.
3. Barthe, P., C. Roumestand, M. J. Canova, L. Kremer, C. Hurard, V. Molle, and M. Cohen-Gonsaud. 2009. Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17:568-78.
4. Baud, V., Z. G. Liu, B. Bennett, N. Suzuki, Y. Xia, and M. Karin. 1999. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 13:1297-308.
5. Blackwell, K., L. Zhang, G. S. Thomas, S. Sun, H. Nakano, and H. Habelhah. 2009. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol 29:303-14.
6. Bonizzi, G., and M. Karin. 2004. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280-8.
7. Byeon, I. J., H. Li, H. Song, A. M. Gronenborn, and M. D. Tsai. 2005. Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 12:987-93.
8. Byeon, I. J., S. Yongkiettrakul, and M. D. Tsai. 2001. Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J Mol Biol 314:577-88.
9. Cai, Z., N. H. Chehab, and N. P. Pavletich. 2009. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell 35:818-29.
10. Chen, L., W. Dong, T. Zou, L. Ouyang, G. He, Y. Liu, and Y. Qi. 2008. Protein phosphatase 4 negatively regulates LPS cascade by inhibiting ubiquitination of TRAF6. FEBS Lett 582:2843-9.
11. Chung, J. Y., Y. C. Park, H. Ye, and H. Wu. 2002. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115:679-88.
12. Clark, K., O. Takeuchi, S. Akira, and P. Cohen. 2011. The TRAF-associated protein TANK facilitates cross-talk within the IkappaB kinase family during Toll-like receptor signaling. Proc Natl Acad Sci U S A 108:17093-8.
13. Dempsey, P. W., S. E. Doyle, J. Q. He, and G. Cheng. 2003. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193-209.
14. Dumitru, C. D., J. D. Ceci, C. Tsatsanis, D. Kontoyiannis, K. Stamatakis, J. H. Lin, C. Patriotis, N. A. Jenkins, N. G. Copeland, G. Kollias, and P. N. Tsichlis. 2000. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103:1071-83.
15. Durocher, D., and S. P. Jackson. 2002. The FHA domain. FEBS Lett 513:58-66.
16. Durocher, D., I. A. Taylor, D. Sarbassova, L. F. Haire, S. L. Westcott, S. P. Jackson, S. J. Smerdon, and M. B. Yaffe. 2000. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6:1169-82.
17. Ea, C. K., L. Sun, J. Inoue, and Z. J. Chen. 2004. TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc Natl Acad Sci U S A 101:15318-23.
18. Fan, A. C., D. Deb-Basu, M. W. Orban, J. R. Gotlib, Y. Natkunam, R. O'Neill, R. A. Padua, L. Xu, D. Taketa, A. E. Shirer, S. Beer, A. X. Yee, D. W. Voehringer, and D. W. Felsher. 2009. Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nat Med 15:566-71.
19. Fang, C. Y., H. Y. Chen, M. Wang, P. L. Chen, C. F. Chang, L. S. Chen, C. H. Shen, W. C. Ou, M. D. Tsai, P. H. Hsu, and D. Chang. 2010. Global analysis of modifications of the human BK virus structural proteins by LC-MS/MS. Virology 402:164-76.
20. Force, W. R., A. A. Glass, C. A. Benedict, T. C. Cheung, J. Lama, and C. F. Ware. 2000. Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways. J Biol Chem 275:11121-9.
21. Habelhah, H., S. Takahashi, S. G. Cho, T. Kadoya, T. Watanabe, and Z. Ronai. 2004. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J 23:322-32.
22. Hauer, J., S. Puschner, P. Ramakrishnan, U. Simon, M. Bongers, C. Federle, and H. Engelmann. 2005. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci U S A 102:2874-9.
23. Hayden, M. S., and S. Ghosh. 2004. Signaling to NF-kappaB. Genes Dev 18:2195-224.
24. Hofmann, K., and P. Bucher. 1995. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci 20:347-9.
25. Huang, Q., J. Yang, Y. Lin, C. Walker, J. Cheng, Z. G. Liu, and B. Su. 2004. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5:98-103.
26. Ishida, T., S. Mizushima, S. Azuma, N. Kobayashi, T. Tojo, K. Suzuki, S. Aizawa, T. Watanabe, G. Mosialos, E. Kieff, T. Yamamoto, and J. Inoue. 1996. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271:28745-8.
27. Jungmichel, S., J. A. Clapperton, J. Lloyd, F. J. Hari, C. Spycher, L. Pavic, J. Li, L. F. Haire, M. Bonalli, D. H. Larsen, C. Lukas, J. Lukas, D. Macmillan, M. L. Nielsen, M. Stucki, and S. J. Smerdon. 2012. The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Res.
28. Kanamori, M., H. Suzuki, R. Saito, M. Muramatsu, and Y. Hayashizaki. 2002. T2BP, a novel TRAF2 binding protein, can activate NF-kappaB and AP-1 without TNF stimulation. Biochem Biophys Res Commun 290:1108-13.
29. Lee, H., C. Yuan, A. Hammet, A. Mahajan, E. S. Chen, M. R. Wu, M. I. Su, J. Heierhorst, and M. D. Tsai. 2008. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 30:767-78.
30. Li, H., and X. Lin. 2008. Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 41:1-8.
31. Li, J., I. A. Taylor, J. Lloyd, J. A. Clapperton, S. Howell, D. MacMillan, and S. J. Smerdon. 2008. Chk2 oligomerization studied by phosphopeptide ligation: implications for regulation and phosphodependent interactions. J Biol Chem 283:36019-30.
32. Li, J., B. L. Williams, L. F. Haire, M. Goldberg, E. Wilker, D. Durocher, M. B. Yaffe, S. P. Jackson, and S. J. Smerdon. 2002. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol Cell 9:1045-54.
33. Li, S., L. Wang, M. A. Berman, Y. Zhang, and M. E. Dorf. 2006. RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-kappaB signaling. Mol Cell 24:497-509.
34. Li, S., L. Wang, and M. E. Dorf. 2009. PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol Cell 33:30-42.
35. Liang, X., and S. R. Van Doren. 2008. Mechanistic insights into phosphoprotein-binding FHA domains. Acc Chem Res 41:991-9.
36. Liao, H., C. Yuan, M. I. Su, S. Yongkiettrakul, D. Qin, H. Li, I. J. Byeon, D. Pei, and M. D. Tsai. 2000. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J Mol Biol 304:941-51.
37. Liu, J., S. Luo, H. Zhao, J. Liao, J. Li, C. Yang, B. Xu, D. F. Stern, X. Xu, and K. Ye. 2012. Structural mechanism of the phosphorylation-dependent dimerization of the MDC1 forkhead-associated domain. Nucleic Acids Res.
38. Lloyd, J., J. R. Chapman, J. A. Clapperton, L. F. Haire, E. Hartsuiker, J. Li, A. M. Carr, S. P. Jackson, and S. J. Smerdon. 2009. A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139:100-11.
39. Lomaga, M. A., W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, G. Van, S. Kaufman, A. van der Heiden, A. Itie, A. Wakeham, W. Khoo, T. Sasaki, Z. Cao, J. M. Penninger, C. J. Paige, D. L. Lacey, C. R. Dunstan, W. J. Boyle, D. V. Goeddel, and T. W. Mak. 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015-24.
40. Luo, K., J. Yuan, and Z. Lou. 2011. Oligomerization of MDC1 is important for proper DNA damage response. J Biol Chem.
41. Mahajan, A., C. Yuan, H. Lee, E. S. Chen, P. Y. Wu, and M. D. Tsai. 2008. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 1:re12.
42. Mahajan, A., C. Yuan, B. L. Pike, J. Heierhorst, C. F. Chang, and M. D. Tsai. 2005. FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J Am Chem Soc 127:14572-3.
43. Malinin, N. L., M. P. Boldin, A. V. Kovalenko, and D. Wallach. 1997. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385:540-4.
44. Matsumura, T., J. Kawamura-Tsuzuku, T. Yamamoto, K. Semba, and J. Inoue. 2009. TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is a negative regulator of the TRAF6-induced cellular functions. J Biochem 146:375-81.
45. Matsumura, T., K. Semba, S. Azuma, S. Ikawa, J. Gohda, T. Akiyama, and J. Inoue. 2004. TIFAB inhibits TIFA, TRAF-interacting protein with a forkhead-associated domain. Biochem Biophys Res Commun 317:230-4.
46. Minoda, Y., K. Saeki, D. Aki, H. Takaki, T. Sanada, K. Koga, T. Kobayashi, G. Takaesu, and A. Yoshimura. 2006. A novel Zinc finger protein, ZCCHC11, interacts with TIFA and modulates TLR signaling. Biochem Biophys Res Commun 344:1023-30.
47. Muzio, M., and A. Mantovani. 2001. Toll-like receptors (TLRs) signalling and expression pattern. J Endotoxin Res 7:297-300.
48. Naito, A., S. Azuma, S. Tanaka, T. Miyazaki, S. Takaki, K. Takatsu, K. Nakao, K. Nakamura, M. Katsuki, T. Yamamoto, and J. Inoue. 1999. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353-62.
49. Nott, T. J., G. Kelly, L. Stach, J. Li, S. Westcott, D. Patel, D. M. Hunt, S. Howell, R. S. Buxton, H. M. O'Hare, and S. J. Smerdon. 2009. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal 2:ra12.
50. O'Neill, R. A., A. Bhamidipati, X. Bi, D. Deb-Basu, L. Cahill, J. Ferrante, E. Gentalen, M. Glazer, J. Gossett, K. Hacker, C. Kirby, J. Knittle, R. Loder, C. Mastroieni, M. Maclaren, T. Mills, U. Nguyen, N. Parker, A. Rice, D. Roach, D. Suich, D. Voehringer, K. Voss, J. Yang, T. Yang, and P. B. Vander Horn. 2006. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc Natl Acad Sci U S A 103:16153-8.
51. Park, Y. C., V. Burkitt, A. R. Villa, L. Tong, and H. Wu. 1999. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398:533-8.
52. Pennell, S., S. Westcott, M. Ortiz-Lombardia, D. Patel, J. Li, T. J. Nott, D. Mohammed, R. S. Buxton, M. B. Yaffe, C. Verma, and S. J. Smerdon. 2010. Structural and functional analysis of phosphothreonine-dependent FHA domain interactions. Structure 18:1587-95.
53. Pomerantz, J. L., and D. Baltimore. 2002. Two pathways to NF-kappaB. Mol Cell 10:693-5.
54. Pullen, S. S., H. G. Miller, D. S. Everdeen, T. T. Dang, J. J. Crute, and M. R. Kehry. 1998. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 37:11836-45.
55. Rothe, M., S. C. Wong, W. J. Henzel, and D. V. Goeddel. 1994. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681-92.
56. Sanz, L., M. T. Diaz-Meco, H. Nakano, and J. Moscat. 2000. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576-86.
57. Seibenhener, M. L., J. R. Babu, T. Geetha, H. C. Wong, N. R. Krishna, and M. W. Wooten. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055-68.
58. Shi, C. S., and J. H. Kehrl. 2003. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 278:15429-34.
59. Sun, Z., J. Hsiao, D. S. Fay, and D. F. Stern. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281:272-4.
60. Tada, K., T. Okazaki, S. Sakon, T. Kobarai, K. Kurosawa, S. Yamaoka, H. Hashimoto, T. W. Mak, H. Yagita, K. Okumura, W. C. Yeh, and H. Nakano. 2001. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 276:36530-4.
61. Takatsuna, H., H. Kato, J. Gohda, T. Akiyama, A. Moriya, Y. Okamoto, Y. Yamagata, M. Otsuka, K. Umezawa, K. Semba, and J. Inoue. 2003. Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling. J Biol Chem 278:12144-50.
62. Takeuchi, M., M. Rothe, and D. V. Goeddel. 1996. Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 271:19935-42.
63. Thomas, G. S., L. Zhang, K. Blackwell, and H. Habelhah. 2009. Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res 69:3665-72.
64. Trauzold, A., C. Roder, B. Sipos, K. Karsten, A. Arlt, P. Jiang, J. I. Martin-Subero, D. Siegmund, S. Muerkoster, L. Pagerols-Raluy, R. Siebert, H. Wajant, and H. Kalthoff. 2005. CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. FASEB J 19:620-2.
65. Wang, C., L. Deng, M. Hong, G. R. Akkaraju, J. Inoue, and Z. J. Chen. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346-51.
66. Wang, K. Z., D. L. Galson, and P. E. Auron. 2010. TRAF6 is autoinhibited by an intramolecular interaction which is counteracted by trans-ubiquitination. J Cell Biochem 110:763-71.
67. Wang, K. Z., N. Wara-Aswapati, J. A. Boch, Y. Yoshida, C. D. Hu, D. L. Galson, and P. E. Auron. 2006. TRAF6 activation of PI 3-kinase-dependent cytoskeletal changes is cooperative with Ras and is mediated by an interaction with cytoplasmic Src. J Cell Sci 119:1579-91.
68. Weston, V. J., B. Austen, W. Wei, E. Marston, A. Alvi, S. Lawson, P. J. Darbyshire, M. Griffiths, F. Hill, J. R. Mann, P. A. Moss, A. M. Taylor, and T. Stankovic. 2004. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling. Blood 104:1465-73.
69. Wu, C. J., D. B. Conze, X. Li, S. X. Ying, J. A. Hanover, and J. D. Ashwell. 2005. TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 24:1886-98.
70. Wu, H. H., P. Y. Wu, K. F. Huang, Y. Y. Kao, and M. D. Tsai. 2012. Structural delineation of MDC1-FHA domain binding with CHK2-pThr68. Biochemistry 51:575-7.
71. Xu, L. G., L. Y. Li, and H. B. Shu. 2004. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem 279:17278-82.
72. Xu, X., L. M. Tsvetkov, and D. F. Stern. 2002. Chk2 activation and phosphorylation-dependent oligomerization. Mol Cell Biol 22:4419-32.
73. Yang, J., Y. Lin, Z. Guo, J. Cheng, J. Huang, L. Deng, W. Liao, Z. Chen, Z. Liu, and B. Su. 2001. The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2:620-4.
74. Ye, H., J. R. Arron, B. Lamothe, M. Cirilli, T. Kobayashi, N. K. Shevde, D. Segal, O. K. Dzivenu, M. Vologodskaia, M. Yim, K. Du, S. Singh, J. W. Pike, B. G. Darnay, Y. Choi, and H. Wu. 2002. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418:443-7.
75. Yin, Q., S. C. Lin, B. Lamothe, M. Lu, Y. C. Lo, G. Hura, L. Zheng, R. L. Rich, A. D. Campos, D. G. Myszka, M. J. Lenardo, B. G. Darnay, and H. Wu. 2009. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 16:658-66.
76. Zapata, J. M., K. Pawlowski, E. Haas, C. F. Ware, A. Godzik, and J. C. Reed. 2001. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem 276:24242-52.
77. Zhang, L., K. Blackwell, A. Altaeva, Z. Shi, and H. Habelhah. 2011. TRAF2 phosphorylation promotes NF-kappaB-dependent gene expression and inhibits oxidative stress-induced cell death. Mol Biol Cell 22:128-40.
78. Zhang, L., K. Blackwell, Z. Shi, and H. Habelhah. 2010. The RING domain of TRAF2 plays an essential role in the inhibition of TNFalpha-induced cell death but not in the activation of NF-kappaB. J Mol Biol 396:528-39.
79. Zhang, L., K. Blackwell, G. S. Thomas, S. Sun, W. C. Yeh, and H. Habelhah. 2009. TRAF2 suppresses basal IKK activity in resting cells and TNFalpha can activate IKK in TRAF2 and TRAF5 double knockout cells. J Mol Biol 389:495-510.
80. Zhao, Q., and F. S. Lee. 1999. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kappaB through IkappaB kinase-alpha and IkappaB kinase-beta. J Biol Chem 274:8355-8.
81. Zheng, C., V. Kabaleeswaran, Y. Wang, G. Cheng, and H. Wu. 2010. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 38:101-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6603-
dc.description.abstractFHA (forkhead-associated) 是一種新發現的結構域,它可以專一性地結合磷酸化蘇氨酸,並藉此調控細胞內許多重要的機制。TIFA是所有已知人類蛋白質包含FHA結構域中最小的一個。先前的文獻已經發現在細胞中大量表現外源性TIFA會激活轉錄因子NF-kappaB,不過TIFA如何參與並調控這訊息傳導仍需要更深入的探討。在此研究中, 我們在TIFA上發現了一個蘇氨酸(第九個氨基酸)有被磷酸化修飾,並證實這個磷酸化蘇氨酸會與TIFA的FHA結構域結合。此交互作用會促進TIFA蛋白質間的聚合並激活下游的NF-kappaB。生化分析的結果顯示在緩衝溶液中,未磷酸化的TIFA是以二聚體的形式存在著,意味著TIFA FHA結構域和第九磷酸化蘇氨酸(pT9)間的結合是TIFA二聚體與二聚體間的交互作用。此外,我們也發現抑制內源性TIFA會削弱細胞激素TNF-alpha引發的訊息傳遞及其功能。根據這些結果,我們認為TIFA FHA-pT9的交互作用是TNF-alpha刺激後活化NF-kappaB傳導途徑中未知的新環節,而此TIFA二聚體分子間藉由FHA-pT9結合形成聚合體的機制,將是FHA結構域研究中另一個全新的範例。zh_TW
dc.description.abstractThe forkhead-associated (FHA) domain recognizes phosphothreonine (pT) with high specificity and functional diversity. TIFA (TRAF-interacting protein with a FHA domain) is the smallest FHA-containing human protein. Its over-expression was previously suggested to provoke NF-kappaB activation, yet its exact roles in this signaling pathway and the underlying molecular mechanism remain unclear. Here we identify a novel phosphorylated threonine site, threonine 9 (pT9), on TIFA and show that this phosphorylation site binds with the FHA domain of TIFA, leading to TIFA oligomerization and TIFA-mediated NF-kappaB activation. Detailed analysis indicated that unphosphorylated TIFA exists as an intrinsic dimer, and that the FHA-pT9 binding occurs between different dimers of TIFA. In addition, silencing of endogenous TIFA resulted in attenuation of TNF-alpha-mediated downstream signaling. We therefore propose that the TIFA FHA-pT9 binding provides a previously unidentified link between TNF-alpha stimulation and NF-kappaB activation. The intermolecular FHA-pT9 binding between dimers also represents a new mechanism for the FHA domain.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:09Z (GMT). No. of bitstreams: 1
ntu-101-D94b46017-1.pdf: 9992558 bytes, checksum: 0bc4b03f68181dc730ddef26ad5c3d09 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書.................................................................................i
ACKNOWLEDGEMENT........................................................................ii
中文摘要.............................................................................................iv
ENGLISH ABSTRACT...........................................................................v
TABLE OF CONTENTS........................................................................vi
FIGURE LIST......................................................................................viii
TABLE LIST........................................................................................xi
Chapter 1. INTRODUCTION ..................................................................1
1.1 FHA domain...................................................................................1
1.1.1 Conserved folding.........................................................................1
1.1.2 Ligand specificity..........................................................................2
1.1.3 Mechanisms of FHA function.........................................................3
1.2 TRAF-interacting protein with a FHA domain (TIFA)............................5
1.3 TNF receptor associated factors (TRAFs)..........................................7
1.4 TNF-alpha-mediated NF-kappaB activation.......................................10
1.5 Inflammatory signaling....................................................................11
1.6 Other proteins relevant to TIFA........................................................14
1.7 Significances................................................................................15
Chapter 2. RESULTS..........................................................................18
2.1 Identification of phosphorylation at Thr9 on TIFA...............................18
2.2 Phosphorylation status of pT9........................................................18
2.3 Search for potential kinase.............................................................20
2.4 Interaction of TIFA-FHA and TIFA-pT9..............................................21
2.5 Expression and purification of recombinant TIFA…………..................23
2.6 Recombinant TIFA exists as intrinsic dimer in solution….….….…......25
2.7 Crystallization of recombinant TIFA..................................................26
2.8 Oligomerization status of native TIFA...............................................30
2.9 TIFA-mediated activation of NF-kappa..............................................32
2.10 Extracellular stimulation augments TIFA protein amount..................33
2.11 Silencing of endogenous TIFA........................................................35
2.12 Interaction of TIFA and TRAF2.......................................................35
Chapter 3. DISCUSSION AND CONCLUDING REMARKS.......................39
Chapter 4. MATERIAL AND METHODS ................................................48
Chapter 5. FIGURES...........................................................................58
Chapter 6. TABLES............................................................................103
Chapter 7. REFERENCES..................................................................113
APPENDIX..........................................................................................xii
Appendix I. List of Supplementary Figures.............................................xii
Appendix II. List of Abbreviations..........................................................xiii
dc.language.isoen
dc.titleTIFA磷酸蘇氨酸與其FHA結構域分子間交互作用與活化NF-kappaB的機制zh_TW
dc.titleIntermolecular binding between TIFA-FHA & TIFA-pT9 mediates TNF-alpha stimulation & NF-kappaB activationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee王惠鈞(Andrew H.-J. Wang),梁博煌(Po-Huang Liang),陳光超(Guang-Chao Chen),何孟樵(Meng-Chiao Ho)
dc.subject.keywordFHA結構域,轉錄因子NF-kappaB,磷酸化蘇氨酸,TIFA,細胞激素TNF-alpha傳遞訊號機制,zh_TW
dc.subject.keywordFHA domain,NF-kappaB,phosphothreonine,TIFA,TNF-alpha-mediated signaling,en
dc.relation.page150
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf9.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved