Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳焜裕(Kuen-Yu Wu)
dc.contributor.authorChien-Yu Liuen
dc.contributor.author劉千玉zh_TW
dc.date.accessioned2021-06-17T00:19:51Z-
dc.date.available2017-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-06-25
dc.identifier.citation1. Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J., Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol Sci 2007, 99 (2), 366-394.
2. Giesy, J. P.; Kannan, K., Perfluorochemical surfactants in the environment. Environ Sci Technol 2002, 36 (7), 146a-152a.
3. Fromme, H.; Tittlemier, S. A.; Volkel, W.; Wilhelm, M.; Twardella, D., Perfluorinated compounds--exposure assessment for the general population in Western countries. Int J Hyg Environ Health 2009, 212 (3), 239-70.
4. Meussdoerffer, J. N.; Niederprum, H., Fluoridated Surfactants and Fluorinated Oil and Water Repellents - Perfluoro Surfactants. Chem Ztg 1980, 104 (2), 45-52.
5. Giesy JP, S. A. M., K. Kannan, P. D. Jones, J. L. Newsted and K.Coady, Perfluorinated Compounds in the North American Great Lakes. Springer-Verlag: Heidleberg, Germany, 2006.
6. Pan, Y. Y.; Shi, Y. L.; Cai, Y. Q., Determination of Perfluorinated Compounds in Human Blood Samples by High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Chinese J Anal Chem 2008, 36 (10), 1321-1326.
7. Houde, M.; Martin, J. W.; Letcher, R. J.; Solomon, K. R.; Muir, D. C. G., Biological monitoring of polyfluoroalkyl substances: A review. Environ Sci Technol 2006, 40 (11), 3463-3473.
8. Haug, L. S.; Thomsen, C.; Becher, G., A sensitive method for determination of a broad range of perfluorinated compounds in serum suitable for large-scale human biomonitoring. J Chromatogr A 2009, 1216 (3), 385-93.
9. Agency, U. E. P., Perfluorooctyl Sulfonate: Proposed Significant New Use rule. Agency, v. F. R. U. S. E. P., Ed. 2000; pp 62319-62333.
10. Renner, R., Concerns over common perfluorinated surfactant. Environ Sci Technol 2003, 37 (11), 201a-202a.
11. Butt, C. M.; Berger, U.; Bossi, R.; Tomy, G. T., Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 2010, 408 (15), 2936-65.
12. Panchangam, S. C.; Lin, A. Y. C.; Shaik, K. L.; Lin, C. F., Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere 2009, 77 (2), 242-248.
13. Lin, A. Y. C.; Panchangam, S. C.; Lo, C. C., The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ Pollut 2009, 157 (4), 1365-1372.
14. Tseng, C. L.; Liu, L. L.; Chen, C. M.; Ding, W. H., Analysis of perfluorooctanesulfonate and related fluorochemicals in water and biological tissue samples by liquid chromatography-ion trap mass spectrometry. Journal of Chromatography A 2006, 1105 (1-2), 119-126.
15. Fromme, H.; Schlummer, M.; Moller, A.; Gruber, L.; Wolz, G.; Ungewiss, J.; Bohmer, S.; Dekant, W.; Mayer, R.; Liebl, B.; Twardella, D., Exposure of an adult population to perfluorinated substances using duplicate diet portions and biomonitoring data. Environ Sci Technol 2007, 41 (22), 7928-7933.
16. Hundley, S. G.; Sarrif, A. M.; Kennedy, G. L., Absorption, distribution, and excretion of ammonium perfluorooctanoate (APFO) after oral administration to various species. Drug Chem Toxicol 2006, 29 (2), 137-145.
17. Luebker, D. J.; Hansen, K. J.; Bass, N. M.; Butenhoff, J. L.; Seacat, A. M., Interactions of flurochemicals with rat liver fatty acid-binding protein. Toxicology 2002, 176 (3), 175-185.
18. Jones, P. D.; Hu, W. Y.; De Coen, W.; Newsted, J. L.; Giesy, J. P., Binding of perfluorinated fatty acids to serum proteins. Environ Toxicol Chem 2003, 22 (11), 2639-2649.
19. Nakagawa, H.; Hirata, T.; Terada, T.; Jutabha, P.; Miura, D.; Harada, K. H.; Inoue, K.; Anzai, N.; Endou, H.; Inui, K. I.; Kanai, Y.; Koizumi, A., Roles of organic anion transporters in the renal excretion of perfluorooctanoic acid. Basic Clin Pharmacol 2008, 103 (1), 1-8.
20. Olsen, G. W.; Burris, J. M.; Ehresman, D. J.; Froehlich, J. W.; Seacat, A. M.; Butenhoff, J. L.; Zobel, L. R., Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Persp 2007, 115 (9), 1298-1305.
21. Fei, C. Y.; McLaughlin, J. K.; Tarone, R. E.; Olsen, J., Fetal growth indicators and perfluorinated chemicals: A study in the Danish National Birth Cohort. Am J Epidemiol 2008, 168 (1), 66-72.
22. Fei, C. Y.; McLaughlin, J. K.; Tarone, R. E.; Olsen, J., Perfluorinated chemicals and fetal growth: A study within the Danish National Birth Cohort. Environ Health Persp 2007, 115 (11), 1677-1682.
23. Seacat, A. M.; Thomford, P. J.; Hansen, K. J.; Clemen, L. A.; Eldridge, S. R.; Elcombe, C. R.; Butenhoff, J. L., Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 2003, 183 (1-3), 117-131.
24. Biegel, L. B.; Hurtt, M. E.; Frame, S. R.; O'Connor, J. C.; Cook, J. C., Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci 2001, 60 (1), 44-55.
25. Alexander, B. H.; Olsen, G. W.; Burris, J. M.; Mandel, J. H.; Mandel, J. S., Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med 2003, 60 (10), 722-729.
26. Gilliland, F. D.; Mandel, J. S., Mortality among employees of a perfluorooctanoic acid production plant. J Occup Med 1993, 35 (9), 950-4.
27. Company, M., Fluorochemical use, distribution and release overview. EPA, Ed. Docket OPPT: 1999.
28. Dinglasan, M. J. A.; Ye, Y.; Edwards, E. A.; Mabury, S. A., Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol 2004, 38 (10), 2857-2864.
29. Chen, C. Y.; Lien, G. W.; Wen, T. W.; Hsieh, W. S.; Wu, K. Y.; Chen, P. C., Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. J Chromatogr B 2011, 879 (9-10), 641-646.
30. von Ehrenstein, O. S.; Fenton, S. E.; Kato, K.; Kuklenyik, Z.; Calafat, A. M.; Hines, E. P., Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reprod Toxicol 2009, 27 (3-4), 239-245.
31. Case, M. T.; York, R. G.; Christian, M. S., Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. Int J Toxicol 2001, 20 (2), 101-109.
32. Luebker, D. J.; Case, M. T.; York, R. G.; Moore, J. A.; Hansen, K. J.; Butenhoff, J. L., Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 2005, 215 (1-2), 126-148.
33. Luebker, D. J.; York, R. G.; Hansen, K. J.; Moore, J. A.; Butenhoff, J. L., Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: Dose-response, and biochemical and pharamacokinetic parameters. Toxicology 2005, 215 (1-2), 149-169.
34. Lau, C.; Thibodeaux, J. R.; Hanson, R. G.; Rogers, J. M.; Grey, B. E.; Stanton, M. E.; Butenhoff, J. L.; Stevenson, L. A., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol Sci 2003, 74 (2), 382-392.
35. Colquhoun, D. R.; Goldman, L. R.; Cole, R. N.; Gucek, M.; Mansharamani, M.; Witter, F. R.; Apelberg, B. J.; Halden, R. U., Global Screening of Human Cord Blood Proteomes for Biomarkers of Toxic Exposure and Effect. Environ Health Persp 2009, 117 (5), 832-838.
36. Karrman, A.; Ericson, I.; van Bavel, B.; Darnerud, P. O.; Aune, M.; Glynn, A.; Lignell, S.; Lindstrom, G., Exposure of perfluorinated chemicals through lactation: Levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ Health Persp 2007, 115 (2), 226-230.
37. So, M. K.; Yamashita, N.; Taniyasu, S.; Jiang, Q. T.; Giesy, J. P.; Chen, K.; Lam, P. K. S., Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol 2006, 40 (9), 2924-2929.
38. Wang, I. J.; Hsieh, W. S.; Chen, C. Y.; Fletcher, T.; Lien, G. W.; Chiang, H. L.; Chiang, C. F.; Wu, T. N.; Chen, P. C., The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res 2011, 111 (6), 785-791.
39. Apelberg, B. J.; Goldman, L. R.; Calafat, A. M.; Herbstman, J. B.; Kuklenyik, Z.; Heidler, J.; Needham, L. L.; Halden, R. U.; Witter, F. R., Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol 2007, 41 (11), 3891-3897.
40. Apelberg, B. J.; Witter, F. R.; Herbstman, J. B.; Calafat, A. M.; Halden, R. U.; Needham, L. L.; Goldman, L. R., Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Persp 2007, 115 (11), 1670-1676.
41. Vanden Heuvel, J. P.; Thompson, J. T.; Frame, S. R.; Gillies, P. J., Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 2006, 92 (2), 476-489.
42. Gonzalez, F. J.; Shah, Y. M., PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 2008, 246 (1), 2-8.
43. Melzer, D.; Rice, N.; Depledge, M. H.; Henley, W. E.; Galloway, T. S., Association between Serum Perfluorooctanoic Acid (PFOA) and Thyroid Disease in the US National Health and Nutrition Examination Survey. Environ Health Persp 2010, 118 (5), 686-692.
44. Shi, Z. M.; Zhang, H. X.; Liu, Y.; Xu, M.; Dai, J. Y., Alterations in gene expression and testosterone synthesis in the testes of male rats exposed to perfluorododecanoic acid. Toxicol Sci 2007, 98 (1), 206-215.
45. Lehmann, K. P.; Phillips, S.; Sar, M.; Foster, P. M. D.; Gaido, K. W., Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicol Sci 2004, 81 (1), 60-68.
46. Kraugerud, M.; Zimmer, K. E.; Ropstad, E.; Verhaegen, S., Perfluorinated compounds differentially affect steroidogenesis and viability in the human adrenocortical carcinoma (H295R) in vitro cell assay. Toxicol Lett 2011, 205 (1), 62-68.
47. Loccisano, A. E.; Campbell, J. L., Jr.; Butenhoff, J. L.; Andersen, M. E.; Clewell, H. J., 3rd, Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reprod Toxicol 2011.
48. Ericson, I.; Marti-Cid, R.; Nadal, M.; Van Bavel, B.; Lindstrom, G.; Domingo, J. L., Human exposure to perfluorinated chemicals through the diet: Intake of perfluorinated compounds in foods from the Catalan (Spain) Market. J Agr Food Chem 2008, 56 (5), 1787-1794.
49. Ericson, I.; Nadal, M.; van Bavel, B.; Lindstrom, G.; Domingo, J. L., Levels of perfluorochemicals in water samples from Catalonia, Spain: is drinking water a significant contribution to human exposure? Environ Sci Pollut R 2008, 15 (7), 614-619.
50. Dufresne, G.; Fouquet, A.; Forsyth, D.; Tittlemier, S. A., Multiresidue determination of quinolone and fluoroquinolone antibiotics in fish and shrimp by liquid chromatography/tandem mass spectrometry. J Aoac Int 2007, 90 (2), 604-612.
51. Tittlemier, S. A.; Pepper, K.; Seymour, C.; Moisey, J.; Bronson, R.; Cao, X. L.; Dabeka, R. W., Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agr Food Chem 2007, 55 (8), 3203-3210.
52. Tittlemier, S. A.; Pepper, K.; Edwards, L.; Cao, X. L., Concentrations of perfluorooctanesulfonamides in Canadian total diet study composite food samples collected between 1992 and 2004 (vol 54, pg 8385, 2006). J Agr Food Chem 2006, 54 (24), 9277-9277.
53. Saito, N.; Harada, K.; Inoue, K.; Sasaki, K.; Yoshinaga, T.; Koizumi, A., Perfluorooctanoate and Perfluorooctane Sulfonate Concentrations in Surface Water in Japan. Journal of Occupational Health 2004, 46 (1), 49-59.
54. USEPA, Analysisof PFOS, FOSA, and PFOA from various food matrices using HPLC electrospray/mass spectrometry. Laboratories, M. S. c. b. C. A., Ed. United States Environmental Protection Agency: 2001.
55. Skutlarek, D.; Exner, M.; Farber, H., Perfluorinated surfactants in surface and drinking water. Environ Sci Pollut R 2006, 13 (5), 299-307.
56. Wang, N.; Szostek, B.; Buck, R. C.; Folsom, P. W.; Sulecki, L. M.; Capka, V.; Berti, W. R.; Gannon, J. T., Fluorotelomer alcohol biodegradation - Direct evidence that perfluorinated carbon chains breakdown. Environ Sci Technol 2005, 39 (19), 7516-7528.
57. Wang, N.; Szostek, B.; Buck, R. C.; Folsom, P. W.; Sulecki, L. M.; Gannon, J. T., 8-2 Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and metabolite yields. Chemosphere 2009, 75 (8), 1089-1096.
58. Fasano, W. J.; Carpenter, S. C.; Gannon, S. A.; Snow, T. A.; Stadler, J. C.; Kennedy, G. L.; Buck, R. C.; Korzeniowski, S. H.; Hinderliter, P. M.; Kemper, R. A., Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat. Toxicol Sci 2006, 91 (2), 341-355.
59. Nabb, D. L.; Szostek, B.; Himmelstein, M. W.; Mawn, M. P.; Gargas, M. L.; Sweeney, L. M.; Stadler, J. C.; Buck, R. C.; Fasano, W. J., In vitro metabolism of 8-2 fluorotelomer alcohol: Interspecies comparisons and metabolic pathway refinement. Toxicol Sci 2007, 100 (2), 333-344.
60. Genuis, S. J.; Birkholz, D.; Ralitsch, M.; Thibault, N., Human detoxification of perfluorinated compounds. Public Health 2010, 124 (7), 367-75.
61. Riddell, N.; Arsenault, G.; Benskin, J. P.; Chittim, B.; Martin, J. W.; McAlees, A.; McCrindle, R., Branched Perfluorooctane Sulfonate Isomer Qantification and Characterization in Blood Serum Samples by HPLC/ESI-MS(/MS). Environ Sci Technol 2009, 43 (20), 7902-7908.
62. Yang, C. H.; Glover, K. P.; Han, X., Characterization of Cellular Uptake of Perfluorooctanoate via Organic Anion-Transporting Polypeptide 1A2, Organic Anion Transporter 4, and Urate Transporter 1 for Their Potential Roles in Mediating Human Renal Reabsorption of Perfluorocarboxylates. Toxicol Sci 2010, 117 (2), 294-302.
63. Yang, C. H.; Glover, K. P.; Han, X., Organic anion transporting polypeptide (Oatp) 1a1-mediated perfluorooctanoate transport and evidence for a renal reabsorption mechanism of Oatp1a1 in renal elimination of perfluorocarboxylates in rats. Toxicol Lett 2009, 190 (2), 163-171.
64. Olsen, G. W.; Chang, S. C.; Noker, P. E.; Gorman, G. S.; Ehresman, D. J.; Lieder, P. H.; Butenhoff, J. L., A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. Toxicology 2009, 256 (1-2), 65-74.
65. Tatum-Gibbs, K.; Wambaugh, J. F.; Das, K. P.; Zehr, R. D.; Strynar, M. J.; Lindstrom, A. B.; Delinsky, A.; Lau, C., Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse. Toxicology 2011, 281 (1-3), 48-55.
66. Renner, R., Scientists hail PFOA reduction plan. Environ Sci Technol 2006, 40 (7), 2083-2083.
67. Martin, J. W.; Muir, D. C. G.; Moody, C. A.; Ellis, D. A.; Kwan, W. C.; Solomon, K. R.; Mabury, S. A., Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry. Anal Chem 2002, 74 (3), 584-590.
68. Kuklenyik, Z.; Needham, L. L.; Calafat, A. M., Measurement of 18 perfluorinated organic acids and amides in human serum using on-line solid-phase extraction. Anal Chem 2005, 77 (18), 6085-6091.
69. Reagen, W. K.; Ellefson, M. E.; Kannan, K.; Giesy, J. P., Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole blood. Anal Chim Acta 2008, 628 (2), 214-21.
70. Leon Shargel, A. B. C. Y., Applied Biopharmaceutics and Pharmacokinetics fourth ed.; Appleton &Lange: New York, 1999.
71. Welling, P. G., Pharmacokinetics: processes, Mathematics, and Applications. American Chemical Society: Washington,DC, 1997.
72. Yamaoka, K.; Nakagawa, T.; Uno, T., Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 1978, 6 (2), 165-75.
73. Schwarz, G., Estimating the Dimension of a Model. Ann. Statist. 1978, 6 (2), 461-464.
74. Lou, I.; Wambaugh, J. F.; Lau, C.; Hanson, R. G.; Lindstrom, A. B.; Strynar, M. J.; Zehr, R. D.; Setzer, R. W.; Barton, H. A., Modeling single and repeated dose pharmacokinetics of PFOA in mice. Toxicol Sci 2009, 107 (2), 331-41.
75. Zhang, H.; Shi, Z.; Liu, Y.; Wei, Y.; Dai, J., Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicol Appl Pharm 2008, 227 (1), 16-25.
76. Son, H. Y.; Kim, S. H.; Shin, H. I.; Bae, H. I.; Yang, J. H., Perfluorooctanoic acid-induced hepatic toxicity following 21-day oral exposure in mice. Arch Toxicol 2008, 82 (4), 239-246.
77. Seacat, A. M.; Thomford, P. J.; Hansen, K. J.; Olsen, G. W.; Case, M. T.; Butenhoff, J. L., Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci 2002, 68 (1), 249-264.
78. Cui, L.; Zhou, Q. F.; Liao, C. Y.; Fu, J. J.; Jiang, G. B., Studies on the Toxicological Effects of PFOA and PFOS on Rats Using Histological Observation and Chemical Analysis. Arch Environ Con Tox 2009, 56 (2), 338-349.
79. Chengelis, C. P., Kirkpatrick, J.B., Myers, N.R., Shinohara, M., Stetson, P.L., Sved, D.W.,, Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats. Reprod. Toxicol 2009a, 27, 400-406.
80. Kudo, N.; Sakai, A.; Mitsumoto, A.; Hibino, Y.; Tsuda, T.; Kawashima, Y., Tissue distribution and hepatic subcellular distribution of perfluorooctanoic acid at low dose are different from those at high dose in rats. Biol Pharm Bull 2007, 30 (8), 1535-1540.
81. Cui, L.; Liao, C. Y.; Zhou, Q. F.; Xia, T. M.; Yun, Z. J.; Jiang, G. B., Excretion of PFOA and PFOS in Male Rats During a Subchronic Exposure. Arch Environ Con Tox 2010, 58 (1), 205-213.
82. Ohmori, K.; Kudo, N.; Katayama, K.; Kawashima, Y., Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 2003, 184 (2-3), 135-40.
83. Zushi, Y.; Takeda, T.; Masunaga, S., Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan. Chemosphere 2008, 71 (8), 1566-1573.
84. So, M. K.; Miyake, Y.; Yeung, W. Y.; Ho, Y. M.; Taniyasu, S.; Rostkowski, P.; Yamashita, N.; Zhou, B. S.; Shi, X. J.; Wang, J. X.; Giesy, J. P.; Yu, H.; Lam, P. K. S., Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 2007, 68 (11), 2085-2095.
85. Loos, R.; Locoro, G.; Huber, T.; Wollgast, J.; Christoph, E. H.; De Jager, A.; Gawlik, B. M.; Hanke, G.; Umlauf, G.; Zaldivar, J. M., Analysis of perfluorooctanoate (PFOA) and other perfluorinated compounds (PFCs) in the River Po watershed in N-Italy. Chemosphere 2008, 71 (2), 306-313.
86. Hansen, K. J.; Johnson, H. O.; Eldridge, J. S.; Butenhoff, J. L.; Dick, L. A., Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ Sci Technol 2002, 36 (8), 1681-1685.
87. Stock, N. L.; Furdui, V. I.; Muir, D. C. G.; Mabury, S. A., Perfluoroalkyl contaminants in the canadian arctic: Evidence of atmospheric transport and local contamination. Environ Sci Technol 2007, 41 (10), 3529-3536.
88. Jahnke, A.; Ahrens, L.; Ebinghaus, R.; Temme, C., Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Environ Sci Technol 2007, 41 (3), 745-752.
89. Boulanger, B.; Peck, A. M.; Schnoor, J. L.; Hornbuckle, K. C., Mass budget of perfluorooctane surfactant in Lake Ontario. Environ Sci Technol 2005, 39 (1), 74-79.
90. Kim, S. K.; Kannan, K., Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes. Environ Sci Technol 2007, 41 (24), 8328-34.
91. Harada, K.; Nakanishi, S.; Saito, N.; Tsutsui, T.; Koizumi, A., Airborne perfluorooctanoate may be a substantial source contamination in Kyoto area, Japan. B Environ Contam Tox 2005, 74 (1), 64-69.
92. Falandysz, J.; Albanis, T.; Bachmann, J.; Bettinetti, R.; Bochentin, I.; Boti, V.; Bristeau, S.; Daehne, B.; Dagnac, T.; Galassi, S.; Jeannot, R.; Oehlmann, J.; Orlikowska, A.; Sakkas, V.; Szczerski, R.; Valsamaki, V.; Schulte-Oehlmann, U., Some chemical contaminant of surface sediments at the Baltic Sea coastal region with special emphasis on androgenic and anti-androgenic compounds. J Environ Sci Heal A 2006, 41 (10), 2127-2162.
93. Taniyasu, S.; Kannan, K.; Horii, Y.; Hanari, N.; Yamashita, N., A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Technol 2003, 37 (12), 2634-2639.
94. Kannan, K.; Tao, L.; Sinclair, E.; Pastva, S. D.; Jude, D. J.; Giesy, J. P., Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch Environ Con Tox 2005, 48 (4), 559-566.
95. Kannan, K.; Corsolini, S.; Falandysz, J.; Oehme, G.; Focardi, S.; Giesy, J. P., Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environ Sci Technol 2002, 36 (15), 3210-6.
96. Kannan, K.; Franson, J. C.; Bowerman, W. W.; Hansen, K. J.; Jones, J. D.; Giesy, J. P., Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. Environ Sci Technol 2001, 35 (15), 3065-3070.
97. Keller, J. M.; Kannan, K.; Taniyasu, S.; Yamashita, N.; Day, R. D.; Arendt, M. D.; Segars, A. L.; Kucklick, J. R., Perfluorinated compounds in the plasma of loggerhead and Kemp's ridley sea turtles from the southeastern coast of the United States. Environ Sci Technol 2005, 39 (23), 9101-9108.
98. Olivero-Verbel, J.; Tao, L.; Johnston-Restrepo, B.; Guette-Fernandez, J.; Baldiris-Avila, R.; O'byrne-Hoyos, I.; Kannan, K., Perfluorooctanesulfonate and related fluorochemicals in biological samples from the north coast of Colombia. Environ Pollut 2006, 142 (2), 367-372.
99. Lieder, P. H.; York, R. G.; Hakes, D. C.; Chang, S. C.; Butenhoff, J. L., A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology 2009, 259 (1-2), 33-45.
100. Bartell, S. M.; Calafat, A. M.; Lyu, C.; Kato, K.; Ryan, P. B.; Steenland, K., Rate of Decline in Serum PFOA Concentrations after Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia. Environ Health Persp 2010, 118 (2), 222-228.
101. Chengelis, C. P., Kirkpatrick, J.B., Radovsky, A., Shinohara, M.,, A 90-day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (PFHxA) in rats (with functional observational battery and motor activity determinations).
Reprod. Toxicol 2009b, 27, 342-351.
102. Calafat, A. M.; Wong, L. Y.; Kuklenyik, Z.; Reidy, J. A.; Needham, L. L., Polyfluoroalkyl chemicals in the US population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Persp 2007, 115 (11), 1596-1602.
103. Olsen, G. W.; Hansen, K. J.; Stevenson, L. A.; Burris, J. M.; Mandel, J. H., Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environ Sci Technol 2003, 37 (5), 888-891.
104. Olsen, G. W.; Church, T. R.; Miller, J. P.; Burris, J. M.; Hansen, K. J.; Lundberg, J. K.; Armitage, J. B.; Herron, R. M.; Medhdizadehkashi, Z.; Nobiletti, J. B.; O'Neill, E. M.; Mandel, J. H.; Zobel, L. R., Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environ Health Persp 2003, 111 (16), 1892-1901.
105. Karrman, A.; Mueller, J. F.; Van Bavel, B.; Harden, F.; Toms, L. M. L.; Lindstrom, G., Levels of 12 perfluorinated chemicals in pooled Australian serum, collected 2002-2003, in relation to age, gender, and region. Environ Sci Technol 2006, 40 (12), 3742-3748.
106. Ericson, I.; Gomez, M.; Nadal, M.; van Bavel, B.; Lindstrom, G.; Domingo, J. L., Perfluorinated chemicals in blood of residents in Catalonia (Spain) in relation to age and gender: A pilot study. Environ Int 2007, 33 (5), 616-623.
107. Holzer, J.; Midasch, O.; Rauchfuss, K.; Kraft, M.; Reupert, R.; Angerer, J.; Kleeschulte, P.; Marschall, N.; Wilhelm, M., Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environ Health Persp 2008, 116 (5), 651-657.
108. Yeung, L. W. Y.; So, M. K.; Jiang, G. B.; Taniyasu, S.; Yamashita, N.; Song, M. Y.; Wu, Y. N.; Li, J. G.; Giesy, J. P.; Guruge, K. S.; Lam, P. K. S., Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environ Sci Technol 2006, 40 (3), 715-720.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66039-
dc.description.abstract全氟碳化物是一種人工合成的物質,因為本身物理和化學性質皆很穩定,過去被廣泛運用於商業中,而科學家在全球各地的環境、動物甚至人類身上都廣泛的偵測到全氟碳化物,因全氟碳化物隨著結構上碳數的增加會使半衰期延長,且不易從生物體中被代謝,引起大家的關注,許多動物及人類的研究發現全氟碳化物會造成生物體肝臟、腎臟及生殖器官的危害甚至有致癌性。全氟碳化物種類相當多,但實際上有研究半衰期的種類屈指可數,如果在體內停留時間越久,慢性危害就更令人擔憂,而多種全氟碳化物同時存在生物體內,彼此間的半衰期及代謝速率等會如何交互影響都值得進一步探討,因此本研究主要探討全氟碳化物的共同暴露在SD大鼠體內所造成的交互作用。
在動物實驗方面將SD大鼠(N=3)分為控制組、低暴露組和高暴露組,利用胃灌食在低暴露組餵與0.002 mg/kg PFBA、PFHxA以及 0.05 mg/kg PFOA、PFNA、PFOS、PFDA和PFDoDA;高暴露組餵與0.0125 mg/kg PFBA、PFHxA以及 1 mg/kg PFOA、PFNA、PFOS、PFDA和PFDoDA,並在不同時間點收集大鼠的血液和尿液,利用新發展的線上固相萃取結合液相層析串聯質譜儀方法分析全氟碳化物,並利用藥物動力學的模式分析數據。
實驗結果發現PFBA在高暴露組於暴露後的2個小時血液中可測到325 ng/mL,而24小時後只偵測到濃度約42 ng/mL左右,在暴露後四小時尿液中的濃度可達573 ng/mL之後便偵測不到。在高暴露組於暴露後2小時在血液中測到微量濃度約3-4 ng/mLPFHxA,在暴露後四小時尿液中可高達1954 ng/mL,之後便無法偵測不到。PFOA、PFNA高暴露組在暴露2小時候,血液中濃度可高達7000左右ng/mL,但PFNA在尿液中濃度最高約100 ng/mL左右而PFOA可高達1100 ng/mL,PFNA從尿液中代謝少,而血液中濃度在81天時仍維持400-1000 ng/mL。PFOS、PFDA在高暴露組於暴露後兩小時濃度達2000-3000 ng/mL,但在尿液中只能偵測到~50 ng/mL左右的濃度,血液中濃度在81天時仍維持400-1000 ng/mL的濃度。PFDoDA在高暴露組暴露2小時候濃度約1000 ng/mL左右,尿液中無法測量,在暴露後81天血液中仍有300 ng/mL左右濃度。可見碳鏈的長短會影響全氟碳化物在生物體的半衰期長短以及是否從尿液中代謝。
從實驗結果發現大鼠同時暴露多種全氟碳化物會造成PFOA和PFNA的半衰期延長。在SD大鼠病理切片證實,同時暴露多種全氟碳化物會使得高暴露組(1 mg/kg)SD大鼠肝臟出現脂肪小泡,且使睪丸的精子生成減少,而整理文獻後發現多種全氟碳化物同時暴露會造成毒性加成反應,雖然各別的全氟碳化物效應影響必須在進一步的執行實驗佐證,但仍表示在環境中同時暴露多種低濃度的全氟碳化物會有毒性累積的危害。
zh_TW
dc.description.abstractPerfluorinated chemicals (PFCs) include a group of man-made organic compounds, which are very stable and widely used in commercial and industrial applications. Recently, exposures to PFCs are concerned about their widely present in the animals and humans. They may cause potential adverse health effects to human such as hepatoxicity, nephrotoxicity, reproductive toxicity, and endocrines interference. At present, kinetic data is only available for single compound among a few of PFC. However, human have been exposed to a mixtures of PFCs in daily life. Therefore, the objective of this study is to explore the kinetics of PFCs mixtures in rodents to evaluate the potential interactions due to co-exposures to PFCs mixtures.
The male SD rats were classified into control, low exposure, and high exposure groups. Low exposure group were treated with a mixtures of 0.002 mg/kg PFBA、PFHxA and 0.05 mg/kg PFOA、PFNA、PFOS、PFDA and PFDoDA , and the high exposure group were treated with a mixtures of 0.0125 mg/kg PFBA、PFHxA and 1 mg/kg PFOA、PFNA、PFOS、PFDA and PFDoDA by the oral gavage. Subsequently urine and serum samples were collected and analyzed for these PFCs with a newly-developed on-line solid-phase extraction liquid chromatography tande, mass spectrometry (LC-MS/MS) method. These data were analyzed to construct their pharcokinetic models.
After data analysis, results show that PFBA can be eliminated during 24 hours from urine, and PFHxA is most rapidLy eliminated so that it was not detectable in serum or urine at 4 hours after treatment. At 2 hours after treatment, the PFOA and PFNA concentration in serum reached the maximum at 7000 ng/mL. PFNA was not well metabolized and excreted from urine and maintained the steady level in serum even at 81 days after treatment. PFOS、PFDA、PFDoDA couLd be determined at 1000-2000 ng/mL in serum at 2 hours after treatment, however, they couldn't be detected at urine ,so they retained 500~1000 ng/mL in the serum.
These results suggest that the longer is the carbon chain of the PFCs; the longer is their half life; however, the half-lives of PFOA and PFNA may increase for co-exposure PFCs .The study showed that co-exposure PFCs at dose of 1 mg/kg would induce reproductive toxicity and liver toxicity, and we comprised the reference to find the addition reaction of toxicity.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:19:51Z (GMT). No. of bitstreams: 1
ntu-101-R99841015-1.pdf: 15049470 bytes, checksum: 316416a2dcdb3be35032ed5767074904 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要……………………………………………………………………………...…ii
英文摘要……………………………………………………………………………..…iv
目錄…………………………………………….……………………………………….vi
圖目錄…………………………………………………………………………………...x
表目錄…………………………………………………………………………………xiv
第一章 前言………………………………………………………………………….....1
1.1全氟碳化物的物理及化學特性………………………………………………….1
1.2全氟碳化物的環境流布…………………………………………………………..3
1.2.1 水………………………………………………………………………… …3
1.2.2 空氣………………………………………………………………………….4
1.2.3 食物………………………………………………………………………….4
1.2.4 動物………………………………………………………………………….5
1.3全氟碳化物的流行病學研究…………………………………………………….6
1.3.1全氟碳化物的致癌性………………………………………………………..7
1.3.2全氟碳化物的生殖發育毒性………………………………………………..8
1.3.3全氟碳化物的肝毒性………………………………………………………..9
1.3.4全氟碳化物造成荷爾蒙失調………………………………………………..9
1.4全氟碳化物在人體的暴露途徑以及暴露程度…………………………………11
1.5全氟碳化物的代謝機制…………………………………………………………13
1.6全氟碳化物的藥物動力學研究…………………………………………………15
1.7全氟碳化物的法規………………………………………………………………17
1.7.1 PFOS………………………………………………………………………...17
1.7.2 PFOA………………………………………………………………………..18
1.8全氟碳化物的分析方法………………………………………………………19
1.9全氟碳化物的分析儀器……………………………………………………….20
1.9.1 線上固相萃取,on-Line SPE (Solid-phase extraction)…………………20
1.9.2 高效能液相串連質譜儀,LC-MS-MS (Liquid chromategraph-tandem mass Spectrometry)…………………………………………………………………….20
1.10 藥物動力學簡述………………………………………………………………21
1.10.1 藥物動力學模式…………………………………………………………21
1.10.2 藥物動力學參數…………………………………………………………22
1.10.3 線性與非線性藥物動力學………………………………………………23
第二章 目的…………………………………………………………………………..25
第三章 材料與方法…………………………………………………………………..27
3.1樣本來源………………………………………………………………………..27
3.1.1化學標準品…………………………………………………………………27
3.1.2實驗動物…………………………………………………………………….28
3.2動物實驗………………………………………………………………………....29
3.2.1血液樣本採集……………………………………………………………….30
3.2.2尿液樣本採集……………………………………………………………….30
3.3樣品前處理………………………………………………………………………31
3.3.1 血液前處理………………………………………………………………...31
3.3.2 尿液前處理………………………………………………………………...31
3.4分析方法介紹……………………………………………………………………32
3.5 標準品溶液配製、校正曲線以及分析方法確效………………………………34
3.6 應用軟體………………………………………………………………………35
第四章 結果與討論…………………………………………………………………...37
4.1動物實驗…………………………………………………………………………37
4.1.1實驗動物體重……………………………………………………………….37
4.1.2動物解剖外觀………………………………………………………………37
4.1.3組織切片……………………………………………………………………38
4.2樣本分析…………………………………………………………………………41
4.2.1 Infusion的質譜圖…………………………………………………………..41
4.2.2檢量線以及基質效應……………………………………………………….41
4.2.3偵測極限、精密度、準確度以及回收率………………………………….41
4.2.4 標準品、血液、尿液樣本分析圖譜………………………………………..42
4.3 SD大鼠血清中7種全氟碳化物濃度變化……………………………………..44
4.3.1 PFBA………………………………………………………………………..44
4.3.2 PFHxA………………………………………………………………………44
4.3.3 PFOA………………………………………………………………………..45
4.3.4 PFNA………………………………………………………………………..48
4.3.5 PFOS………………………………………………………………………...49
4.3.6 PFDA………………………………………………………………………..50
4.3.7 PFDoDA…………………………………………………………………….51
4.4 SD大鼠血清中全氟碳化物的藥物動力學參數……………………………….53
4.4.1 PFBA………………………………………………………………………..53
4.4.2 PFHxA………………………………………………………………………53
4.4.3 PFOA………………………………………………………………………..53
4.4.4 PFNA………………………………………………………………………..54
4.4.5 PFOS………………………………………………………………………...56
4.4.6 PFDA………………………………………………………………………..57
4.4.7 PFDoDA…………………………………………………………………….58
第五章 結論與建議…………………………………………………………………...59
圖目錄
圖一、8:2 FTOHs 降解流程圖………………………………………………………...61
圖二、描述各種陰離子蛋白對全氟碳化物在肝臟的排泄過程扮演的角色………..62
圖三、胃灌食後大鼠的血液中PFBS濃度變化(實線為預測值、圓圈為實際值)…62
圖四、靜脈注射後食蟹猴血液中PFBS濃度變化(實線為預測值、圓圈為實際值)..63
圖五、暴露PFBS的勞工體內血液濃度的變化(實線為預測值、圓圈為實際值)….64
圖六、SD大鼠血液中PFNA濃度變化………………………………………………64
圖七、CD1小鼠血液中PFNA濃度變化…………………………………………….65
圖八、PFOA和PFOS在大鼠體內PBPK modeL的架構…………………………….65
圖九、左圖暴露每公斤15毫克PFOS、右圖暴露於每公斤1毫克PFOS(雄鼠)….66
圖十、左圖暴露每公斤15毫克PFOS、右圖暴露於每公斤1毫克PFOS(雌鼠)…66
圖十一、暴露每公斤25毫克的PFOA(雄鼠)………………………………………..66
圖十二、暴露每公斤25毫克的PFOA(雌鼠)………………………………………..67
圖十三、線上固相萃取液相層析串聯式質譜儀裝置圖……………………………..68
圖十四、LC-MS-MS簡易示意圖…………………………………………………….69
圖十五、前處理步驟………………………………………………………………….70
圖十六、六相閥轉換時間以及wash pump、LC pump移動相成分和梯度………..71
圖十七、暴露全氟碳化物後SD大鼠體重的變化......................................................72
圖十八、暴露全氟碳化物後經由H&E染色的腎臟組織切片(A) 控制組 (B) 低暴露組 (C) 高暴露組………………………………………………………………………72
圖十九、暴露全氟碳化物後經由H&E染色的肝臟組織切片(A) 控制組 (B) 低暴露組 (C) 高暴露組………………………………………………………………………73
圖二十、暴露全氟碳化物後經由H&E染色的睪丸組織切片(A) 控制組 (B) 低暴露組 (C) 高暴露組………………………………………………………………………73
圖二十一、PFBA Infusion的質譜圖…………………………………………………73
圖二十二、PFHxA infusion的質譜圖…………………………………………………74
圖二十三、PFOA infusion的質譜圖………………………………………………..…74
圖二十四、PFNA infusion的質譜圖………………………………………………….75
圖二十五、PFOS infusion的質譜圖………………………………………………….75
圖二十六、PFDA infusion 質譜圖……………………………………………………76
圖二十七、PFDoDA infusion 質譜圖…………………………………………………76
圖二十八、PFBA在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線..77
圖二十九、PFBA在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線..77
圖三十、PFHxA在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線...78
圖三十一、PFHxA在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線….78
圖三十二、PFOA在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線..79
圖三十三、PFOA在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線..79
圖三十四、PFNA在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線..80
圖三十五、PFNA在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線..80
圖三十六、PFOS在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線..81
圖三十七、PFOS在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線..81
圖三十八、PFDA在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線...82
圖三十九、PFDA在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線...82
圖四十、PFDoDA在三種不同基質中(MeOH、Urine、Serum)的低濃度校正曲線..83
圖四十一、PFDoDA在三種不同基質中(MeOH、Urine、Serum)的高濃度校正曲線..83
圖四十二、PFBA、PFHxA、PFOA、PFNA、PFOS、PFDA以及PFDoDA(10ng/mL)溶於MeOH的TIC圖…………………………………………………………………84
圖四十三PFBA(10 ng/mL)溶於MeOH的圖譜………………………………………84
圖四十四、PFHxA(10 ng/mL)溶於MeOH的圖譜……………………………………85
圖四十五、PFOA(10 ng/mL)溶於MeOH的圖譜……………………………………..85
圖四十六、PFNA(10 ng/mL)溶於MeOH的圖譜……………………………………..86
圖四十七、PFOS(10 ng/mL)溶於MeOH的圖譜…………………………………….86
圖四十八、PFDA(10 ng/mL)溶於MeOH的圖譜…………………………………….87
圖四十九、PFDoDA(10 ng/mL)溶於MeOH的圖譜……………………………….…87
圖五十、高暴露組血清中PFBA、PFHxA、PFOA、PFNA、PFOS、PFDA以及PFDoDA的TIC圖.. ……………………………..…………….…………………………………88
圖五十一、高暴露組血清中的PFBA………………………………..…………….…88
圖五十二、高暴露組血清中PFHxA……………………………..…………….…..…89
圖五十三、高暴露組血清中的PFOA…………………………………………………89
圖五十四、高暴露組血清中的PFNA…………………………………………………90
圖五十五、高暴露組血清中的PFOS………………………………………………….90
圖五十六、高暴露組血清中的PFDA…………………………………………………91
圖五十七、高暴露組血清中的PFDoDA……………………………………………..91
圖五十八、高暴露組尿液中PFBA、PFHxA、PFOA、PFNA、PFOS、PFDA以及PFDoDA的TIC圖……………..………………………………………………………92
圖五十九、高暴露組尿液中的PFBA …………………………………………………92
圖六十、高暴露組尿液中的PFHxA ………………………………………………….93
圖六十一、高暴露組尿液中的PFOA …………………………………………………93
圖六十二、高暴露組尿液中的PFNA…………………………………………………94
圖六十三、高暴露組尿液中的PFOS…………………………………………………94
圖六十四、高暴露組尿液中的PFDA…………………………………………………95
圖六十五、高暴露組尿液中的PFDoDA ……………………………………………..95
圖六十六、高暴露組SD大鼠(N=3)血清中PFBA濃度變化……………………….96
圖六十七、高暴露組SD大鼠(N=3)尿液中PFBA濃度變化……………………….96
圖六十八、高暴露組SD大鼠(N=3)尿液中PFHxA濃度變化………………………97
圖六十九、高暴露組、低暴露組及控制組的SD大鼠(N=3)血清中PFOA濃度變化…... ……………………………………………………………………………...…..97
圖七十、高暴露組、低暴露組及控制組的SD大鼠(N=3)尿液中PFOA濃度變化…………………………………………………………………………………...…..98
圖七十一、高暴露組的SD大鼠(N=3)尿液中PFOA的累積排泄量………………98
圖七十二、低暴露組的SD大鼠(N=3)尿液中PFOA的累積排泄量………………99
圖七十三、高暴露組、低暴露組及控制組的SD大鼠(N=3)血清中PFNA濃度變化………………………………………………………………………………….……99
圖七十四、高暴露組SD大鼠(N=3)尿液中PFNA濃度變化……………………….100
圖七十五、高暴露組的SD大鼠(N=3)尿液中PFNA的累積排泄量………………100
圖七十六、高暴露組、低暴露組及控制組的SD大鼠(N=3)血清中PFOS濃度變化……………………………………………………………………………….…..…101
圖七十七、高暴露組SD大鼠(N=3)尿液中PFOS濃度變化…………….……..…101
圖七十八、高暴露組的SD大鼠(N=3)尿液中PFOS的累積排泄量……………..….102
圖七十九、高暴露組、低暴露組及控制組的SD大鼠(N=3)血清中PFDA濃度變化…………….…………………………………………………………………….….102
圖八十、高暴露組、低暴露組及控制組的SD大鼠(N=3)血清中PFDoDA濃度變化………….………………………………………………………………………..…103


表目錄
表一、 不同國家水體中全氟碳化物的含量……………………………...…………104
表二、 不同國家空氣中全氟碳化物的含量……………………………...…………105
表三、 全氟碳化物在不同地區魚類體內含量……………………………...………106
表四、 全氟碳化物在不同區域動物血液中的含量………………………...………107
表五、 全氟碳化物在不同生物體內的半衰期………………………...……………108
表六、 各國居民血液樣本中全氟碳化物濃度……………………...………………109
表七、 不同的前處理方式…………………………………………………………..110
表八、 19種全氟碳化物的母離子、子離子和CAS Number………………………111
表九、 游離化最佳條件……………………………………………………………..113
表十、LC-MS-MS 分析使用條件…………………………………………………...113
表十一、SD大鼠腎、睪丸重量以及外觀(N=3) …………………………………..114
表十二、SD大鼠暴露後的肝重與相對肝重(N=3) ………………………………..115
表十三、7種全氟碳化物在MeOH中的精密度與準確度(N=3) …………………116
表十四、7種全氟碳化物在尿液中的精密度與準確度(N=3) ………………….…117
表十五、7種全氟碳化物在血清中的精密度與準確度(N=3) ……………….……118
表十六、7種全氟碳化物分別在尿液及血清中的回收率 (Mean±SD,N=3) …………………………………………………………………………………..119
表十七、分別於SD大鼠胃灌食0.5和1 mg/kg PFOA後血清中的藥物動力學參數(以Mean±SD表示,N=3) ………………………………………………………………120
表十八、分別於SD大鼠胃灌食0.5和1 mg/kg PFNA後血清中的藥物動力學參數(以Mean±SD表示,N=3) ………………………………………………………………..120
表十九、不同研究中PFNA的藥物動力學參數比較(SD±95%C.I) ……………………………………………………………………………….121
表二十、分別於SD大鼠胃灌食0.5和1 mg/kg PFOS後血清中的藥物動力學參數(以Mean±SD表示,N=3) ………………………………………………………………121
表二十一、分別於SD大鼠胃灌食0.5和1 mg/kg PFDA後血清中的藥物動力學參數(以Mean±SD表示,N=3) ………………………………………………………..122
表二十二、分別於SD大鼠胃灌食0.5和1 mg/kg PFDoDA後血清中的藥物動力學參數(以Mean±SD表示,N=3) ………………………………………………………122
dc.language.isozh-TW
dc.subject藥物動力學zh_TW
dc.subject半衰期zh_TW
dc.subject全氟碳化物zh_TW
dc.subjectPerfluorinated chemicalsen
dc.subjectHalf-Livesen
dc.subjectPharmacokineticsen
dc.title全氟碳化物在嚙齒動物的毒理動力學研究zh_TW
dc.titleToxicokineticstudies of perfluorinated chemicals in rodentsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡東湖(Tung-Hu Tsai),鄭尊仁(Tsun-Jen Cheng),陳保中(Pau-Chung Chen),陳家揚(Chia-Yang Chen)
dc.subject.keyword全氟碳化物,半衰期,藥物動力學,zh_TW
dc.subject.keywordPerfluorinated chemicals,Half-Lives,Pharmacokinetics,en
dc.relation.page130
dc.rights.note有償授權
dc.date.accepted2012-06-26
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
14.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved