請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陶秘華(Mi-Hua Tao) | |
| dc.contributor.author | Chin-Wen Lai | en |
| dc.contributor.author | 賴勁文 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:18:51Z | - |
| dc.date.available | 2013-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-27 | |
| dc.identifier.citation | 1. Akdis, C. A. 2012. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med 18:736-749.
2. Andersson, S., D. L. Davis, H. Dahlback, H. Jornvall, and D. W. Russell. 1989. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264:8222-8229. 3. Arshad, S. H., B. Bateman, A. Sadeghnejad, C. Gant, and S. M. Matthews. 2007. Prevention of allergic disease during childhood by allergen avoidance: the Isle of Wight prevention study. J Allergy Clin Immunol 119:307-313. 4. Barnden, M. J., J. Allison, W. R. Heath, and F. R. Carbone. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 76:34-40. 5. Bertolino, P., M. C. Trescol-Biemont, and C. Rabourdin-Combe. 1998. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28:221-236. 6. Bochner, B. S., and Q. Hamid. 2003. Advances in mechanisms of allergy. J Allergy Clin Immunol 111:S819-S823. 7. Bousquet, J., C. Bachert, G. W. Canonica, T. B. Casale, A. A. Cruz, R. J. Lockey, and T. Zuberbier. 2009. Unmet needs in severe chronic upper airway disease (SCUAD). J Allergy Clin Immunol 124:428-433. 8. Bowen, H., A. Kelly, T. Lee, and P. Lavender. 2008. Control of cytokine gene transcription in Th1 and Th2 cells. Clin Exp Allergy 38:1422-1431. 9. Buxbaum, J., P. Qian, P. M. Allen, and M. G. Peters. 2008. Hepatitis resulting from liver-specific expression and recognition of self-antigen.J Autoimmun 31:208-215. 10. Calne, R. Y., R. A. Sells, J. R. Pena, D. R. Davis, P. R. Millard, B. M. Herbertson, R. M. Binns, and D. A. Davies. 1969. Induction of immunological tolerance by porcine liver allografts. Nature 223:472-476. 11. Cao, O., E. Dobrzynski, L. Wang, S. Nayak, B. Mingle, C. Terhorst, and R. W. Herzog. 2007. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 110:1132-1140. 12. Crispe, I. N. 2011. Liver antigen-presenting cells. J Hepatol54:357-365. 13. Crotzer, V. L., and J. S. Blum. 2010. Autophagy and adaptive immunity. 33 Immunology 131:9-17. 14. Derkow, K., C. Loddenkemper, J. Mintern, N. Kruse, K. Klugewitz, T. Berg, B. Wiedenmann, H. L. Ploegh, and E. Schott. 2007. Differential priming of CD8 and CD4 T-cells in animal models of autoimmune hepatitis and cholangitis. Hepatology 46:1155-1165. 15. Dobrzynski, E., F. Mingozzi, Y. L. Liu, E. Bendo, O. Cao, L. Wang, and R. W. Herzog. 2004. Induction of antigen-specific CD4+ T-cell anergy and deletion by in vivo viral gene transfer. Blood 104:969-977. 16. Durham, S. R., S. M. Walker, E. M. Varga, M. R. Jacobson, F. O'Brien, W. Noble, S. J. Till, Q. A. Hamid, and K. T. Nouri-Aria. 1999. Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med 341:468-475. 17. Eder, W., M. J. Ege, and E. von Mutius. 2006. The asthma epidemic. N Engl J Med 355:2226-2235. 18. Erhardt, A., M. Biburger, T. Papadopoulos, and G. Tiegs. 2007. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology 45:475-485. 19. Fischer-Fantuzzi, L., and C. Vesco. 1988. Cell-dependent efficiency of reiterated nuclear signals in a mutant simian virus 40 oncoprotein targeted to the nucleus. Mol Cell Biol 8:5495-5503. 20. Fisher, K. J., K. Jooss, J. Alston, Y. Yang, S. E. Haecker, K. High, R. Pathak, S. E. Raper, and J. M. Wilson. 1997. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3:306-312. 21. Franco, A., V. Barnaba, P. Natali, C. Balsano, A. Musca, and F. Balsano. 1988. Expression of class I and class II major histocompatibility complex antigens on human hepatocytes. Hepatology 8:449-454. 22. Fu, S. M., U. S. Deshmukh, and F. Gaskin. 2011. Pathogenesis of systemic lupus erythematosus revisited 2011: end organ resistance to damage, autoantibody initiation and diversification, and HLA-DR.J Autoimmun 37:104-112. 23. Gao, G., Q. Wang, R. Calcedo, L. Mays, P. Bell, L. Wang, L. H. Vandenberghe, R. Grant, J. Sanmiguel, E. E. Furth, and J. M. Wilson. 2009. Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum Gene Ther 20:930-942. 24. Gershwin, M. E., and I. R. Mackay. 2008. The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology 47:737-745. 25. Goubier, A., B. Dubois, H. Gheit, G. Joubert, F. Villard-Truc, C. Asselin-Paturel, G. Trinchieri, and D. Kaiserlian. 2008. Plasmacytoid 34 dendritic cells mediate oral tolerance. Immunity 29:464-475. 26. Henning, P., T. Gustafsson, C. F. Flach, Y. J. Hua, A. Strombeck, J. Holmgren, L. Lindholm, and U. Yrlid. 2011. The subcellular location of antigen expressed by adenoviral vectors modifies adaptive immunity but not dependency on cross-presenting dendritic cells. Eur J Immunol 41:2185-2196. 27. Herkel, J., B. Jagemann, C. Wiegard, J. F. Lazaro, S. Lueth, S. Kanzler, M. Blessing, E. Schmitt, and A. W. Lohse. 2003. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes. Hepatology 37:1079-1085. 28. Hogquist, K. A., S. C. Jameson, W. R. Heath, J. L. Howard, M. J. Bevan, and F. R. Carbone. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17-27. 29. Holgate, S. T. 2012. Innate and adaptive immune responses in asthma. Nat Med 18:673-683. 30. Holz, L. E., A. Warren, D. G. Le Couteur, D. G. Bowen, and P. Bertolino. 2010. CD8+ T cell tolerance following antigen recognition on hepatocytes.J Autoimmun 34:15-22. 31. John, B., and I. N. Crispe. 2004. Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol 172:5222-5229. 32. Kaplitt, M. G., P. Leone, R. J. Samulski, X. Xiao, D. W. Pfaff, K. L. O'Malley, and M. J. During. 1994. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148-154. 33. Kessler, P. D., G. M. Podsakoff, X. Chen, S. A. McQuiston, P. C. Colosi, L. A. Matelis, G. J. Kurtzman, and B. J. Byrne. 1996. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A 93:14082-14087. 34. Knolle, P. A., and G. Gerken. 2000. Local control of the immune response in the liver. Immunol Rev 174:21-34. 35. Lewis, P. J., H. van Drunen Littel-van den, and L. A. Babiuk. 1999. Altering the cellular location of an antigen expressed by a DNA-based vaccine modulates the immune response. J Virol 73:10214-10223. 36. Limmer, A., J. Ohl, C. Kurts, H. G. Ljunggren, Y. Reiss, M. Groettrup, F. Momburg, B. Arnold, and P. A. Knolle. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348-1354. 37. Lloyd, C. M., and E. M. Hessel. 2010. Functions of T cells in asthma: more than just T(H)2 cells. Nature reviews. Immunology 10:838-848. 35 38. Lo, C. H., S. C. Lee, P. Y. Wu, W. Y. Pan, J. Su, C. W. Cheng, S. R. Roffler, B. L. Chiang, C. N. Lee, C. W. Wu, and M. H. Tao. 2003. Antitumor and antimetastatic activity of IL-23.J Immunol 171:600-607. 39. Luth, S., S. Huber, C. Schramm, T. Buch, S. Zander, C. Stadelmann, W. Bruck, D. C. Wraith, J. Herkel, and A. W. Lohse. 2008. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J Clin Invest 118:3403-3410. 40. Manno, C. S., G. F. Pierce, V. R. Arruda, B. Glader, M. Ragni, J. J. Rasko, M. C. Ozelo, K. Hoots, P. Blatt, B. Konkle, M. Dake, R. Kaye, M. Razavi, A. Zajko, J. Zehnder, P. K. Rustagi, H. Nakai, A. Chew, D. Leonard, J. F. Wright, R. R. Lessard, J. M. Sommer, M. Tigges, D. Sabatino, A. Luk, H. Jiang, F. Mingozzi, L. Couto, H. C. Ertl, K. A. High, and M. A. Kay. 2006. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342-347. 41. Martino, A. T., S. Nayak, B. E. Hoffman, M. Cooper, G. Liao, D. M. Markusic, B. J. Byrne, C. Terhorst, and R. W. Herzog. 2009. Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity. PloS one 4:e6376. 42. Mays, L. E., L. H. Vandenberghe, R. Xiao, P. Bell, H. J. Nam, M. Agbandje-McKenna, and J. M. Wilson. 2009. Adeno-associated virus capsid structure drives CD4-dependent CD8+ T cell response to vector encoded proteins.J Immunol 182:6051-6060. 43. Mays, L. E., and J. M. Wilson. 2011. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther 19:16-27. 44. Mazariegos, G. V., A. F. Zahorchak, J. Reyes, H. Chapman, A. Zeevi, and A. W. Thomson. 2005. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. Am J Transplant 5:314-322. 45. Mehal, W. Z., A. E. Juedes, and I. N. Crispe. 1999. Selective retention of activated CD8+ T cells by the normal liver.J Immunol 163:3202-3210. 46. Mingozzi, F., and K. A. High. 2011. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341-355. 47. Mingozzi, F., M. V. Maus, D. J. Hui, D. E. Sabatino, S. L. Murphy, J. E. Rasko, M. V. Ragni, C. S. Manno, J. Sommer, H. Jiang, G. F. Pierce, H. C. Ertl, and K. A. High. 2007. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 13:419-422. 48. Miyagawa, F., J. Gutermuth, H. Zhang, and S. I. Katz. 2010. The use of 36 mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 35:192-198. 49. Nakai, H., R. W. Herzog, J. N. Hagstrom, J. Walter, S. H. Kung, E. Y. Yang, S. J. Tai, Y. Iwaki, G. J. Kurtzman, K. J. Fisher, P. Colosi, L. B. Couto, and K. A. High. 1998. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91:4600-4607. 50. Neefjes, J., M. L. Jongsma, P. Paul, and O. Bakke. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature reviews. Immunology 11:823-836. 51. Nelson, H. S. 2011. Subcutaneous immunotherapy. J Allergy Clin Immunol 128:907-907 e903. 52. Nguyen, T. H., and T. B. Casale. 2011. Immune modulation for treatment of allergic disease. Immunol Rev 242:258-271. 53. Ozdemir, C., D. Yazi, I. Gocmen, O. Yesil, M. Aydogan, A. Semic-Jusufagic, N. N. Bahceciler, and I. B. Barlan. 2007. Efficacy of long-term sublingual immunotherapy as an adjunct to pharmacotherapy in house dust mite-allergic children with asthma. Pediatr Allergy Immunol 18:508-515. 54. Radziewicz, H., C. C. Ibegbu, M. L. Fernandez, K. A. Workowski, K. Obideen, M. Wehbi, H. L. Hanson, J. P. Steinberg, D. Masopust, E. J. Wherry, J. D. Altman, B. T. Rouse, G. J. Freeman, R. Ahmed, and A. Grakoui. 2007. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol 81:2545-2553. 55. Sato, K., K. Yabuki, T. Haba, and T. Maekawa. 1996. Role of Kupffer cells in the induction of tolerance after liver transplantation. J Surg Res 63:433-438. 56. Schaefer, E. A., and D. S. Pratt. 2012. Autoimmune hepatitis: current challenges in diagnosis and management in a chronic progressive liver disease. Curr Opin Rheumatol 24:84-89. 57. Schuler, P., E. Contassot, M. Irla, S. Hugues, O. Preynat-Seauve, F. Beermann, A. Donda, L. E. French, and B. Huard. 2008. Direct presentation of a melanocyte-associated antigen in peripheral lymph nodes induces cytotoxic CD8+ T cells. Cancer Res 68:8410-8418. 58. Silver, P. B., R. K. Agarwal, S. B. Su, I. Suffia, R. S. Grajewski, D. Luger, C. C. Chan, R. M. Mahdi, J. M. Nickerson, and R. R. Caspi. 2007. Hydrodynamic vaccination with DNA encoding an immunologically privileged retinal antigen protects from autoimmunity through induction of regulatory T cells.J Immunol 179:5146-5158. 59. Wahl, C., P. Bochtler, L. Chen, R. Schirmbeck, and J. Reimann. 2008. 37 B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology 135:980-988. 60. Wan, Y. Y., and R. A. Flavell. 2007. 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev 220:199-213. 61. Weber, M., J. Rabinowitz, N. Provost, H. Conrath, S. Folliot, D. Briot, Y. Cherel, P. Chenuaud, J. Samulski, P. Moullier, and F. Rolling. 2003. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 7:774-781. 62. Winau, F., G. Hegasy, R. Weiskirchen, S. Weber, C. Cassan, P. A. Sieling, R. L. Modlin, R. S. Liblau, A. M. Gressner, and S. H. Kaufmann. 2007. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26:117-129. 63. Wu, K., Y. Bi, K. Sun, and C. Wang. 2007. IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol 4:269-275. 64. Wuensch, S. A., J. Spahn, and I. N. Crispe. 2010. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology 52:1068-1077. 65. Xiao, W., S. C. Berta, M. M. Lu, A. D. Moscioni, J. Tazelaar, and J. M. Wilson. 1998. Adeno-associated virus as a vector for liver-directed gene therapy. J Virol 72:10222-10226. 66. Xiao, X., J. Li, and R. J. Samulski. 1996. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098-8108. 67. Yu, M. C., C. H. Chen, X. Liang, L. Wang, C. R. Gandhi, J. J. Fung, L. Lu, and S. Qian. 2004. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40:1312-1321. 68. Zaiss, A. K., Q. Liu, G. P. Bowen, N. C. Wong, J. S. Bartlett, and D. A. Muruve. 2002. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76:4580-4590. 69. Ziegler, R. J., M. Cherry, C. M. Barbon, C. Li, S. D. Bercury, D. Armentano, R. J. Desnick, and S. H. Cheng. 2007. Correction of the biochemical and functional deficits in fabry mice following AAV8-mediated hepatic expression of alpha-galactosidase A. Mol Ther 15:492-500. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66010 | - |
| dc.description.abstract | 過敏性疾病是因為過敏原引起的免疫反應所造成的一群疾病統稱,包含在全球造成三億多人受害的氣喘。為了了更更好的管控氣喘,有一種方式是針對過敏原專一性所研發的長效免疫療療法。另外對於肝臟免疫耐受性效應的了了解,有可能使我們利利用肝臟環境的特性應用到氣喘治療療上。我們推論論在肝臟的抗原表現有可能造成周邊免疫耐受性,且機會成為有效的氣喘療療法。另外肝細胞抗原的位置對於的位置對於免疫活化或免疫耐受性的影響仍不不清楚,本論論文將一併討論論。
為進行不同抗原位置的研究,我們先做出可表現在不不同位置的質體並確認其 表現位置正確。將正確的質體包裹至Adeno-associated virus (AAV) 並將抗原卵卵白蛋白Ovalbumin, OVA)傳感至老老鼠肝細胞,待表現一個月後分別將具抗原特異異性的 CD4+和 CD8+ T 淋淋巴球以繼承性轉移(Adoptive transfer)方式去追蹤淋淋巴球表型變 化和免疫病理理現象。此外,我們也以complete Freund’s adjuvant immunization探討抗 體生成是否有受到影響,並期望能使用氣喘小鼠模型觀察此一影響對 Liver tolerance 的應用性是否有所延展。從實驗中可發現,Antigen-specific CD8+ T cells 碰到胞內抗原都都會有強烈烈的分裂裂反應,從淋淋巴球上表面標記蛋白(Surface marker) 可以看到在Adoptive transfer後第一天就能看到細胞活化,包括CD62L表現量量下降降 和CD69表現量量上升。其活化造成短期的 ALT 上升,並能在肝臟病理理切切片中明顯 發現有淋淋巴球浸潤的現象,但十天後開始回歸正常值。一個月後以活體毒殺殺性淋淋 巴球試驗測試發現,胞內抗原對 CD8+ T cells 的反應雖在初期有造成活化並且有 effector的功能,但在一個月後再次碰到抗原時無法進行行清除,此並非一完整的 CD8+ T cells 活化。其中表現在粒粒線體的抗原造成的免疫反應較表現在細胞質中的 抗原略略強,此現象仍待進一步的實驗證明,是否抗原表現位置會對免疫反應造成 影響。另一方面,胞內抗原並無法造成 Antigen-specific CD4+ T cells 增生。 Immunization的實驗中,在對 B6 或是 BALB/c 品系老老鼠進行行AAV transduction後 一個月做抗原免疫試驗,發現胞內抗原都都無法抑制專一性抗體的產生。 合併來來看,我們的結果進一步了了解肝臟環境內調控T cell的機制,而這些訊息 對於日後發展過敏性疾病或自體免疫疾病的新型免疫調控療療法可能有所助益。 | zh_TW |
| dc.description.abstract | It is now known that the ‘liver tolerance effect’ mediates local and systemic tolerance to self as well as foreign antigens. We hypothesized that ectopic expression of autoantigens in the liver might be an effective approach for induction of peripheral tolerance to autoreactive lymphocytes. Besides, the influence of antigen localization in hepatocytes on immune activation/ tolerance is not clear and was investigated in this study.
We expressed ovalbumin (OVA) at different subcellular localizations, including cytoplasmic (cOVA), mitochondrial (mtOVA), nuclear (nOVA) and membrane-bound (mbOVA) OVA. ELISA assays showed that only sOVA but not the other forms was present in the culture supernatant. mbOVA was the unique form present at the cell surface on a significant fraction of transfected cells. Besides, we confirmed OVA expression in the cytoplasm, nucleus, and mitochondria, respectively, in cOVA, nOVA, and mtOVA transfected cells by immunofluorescence assay (IFA). In vivo expression of OVA proteins was confirmed by analyzing hepatocytes isolated from AAV-OVA-transduced mice. IFA analysis showed that the different forms of OVA were expressed at the expected subcellular localizations. When OVA-specific OT-1 CD8+ T cells encountered with the hepatic OVA by adoptive transferring, there was a significant increase in the absolute numbers of OT-1 cells in the liver of the cOVA and mtOVA mice but not in the GFP mice. Strong OT-1 proliferation was further confirmed by the diluted CFSE intensity in these OVA-expressing mice. These OT-1 cells were activated as indicated by their lower CD62L expression in the livers of cOVA mice compared with that in the GFP control mice. Consistently, CD69, another activation marker of lymphocytes, was uniformly up-regulated on OT-1 T cells in the OVA-expressing mice versus mice expressing GFP. In an in vivo cytotoxicity assay, peptide-pulsed splenocytes were eliminated favorably in cOVA and mtOVA mice versus the GFP mice. The serum ALT levels, an indicator of liver damage, was significantly increased in cOVA and mtOVA mice but not in the GFP mice. Histological analysis revealed foci of mononuclear cell infiltration in cOVA and mtOVA mice but not in the control GFP mice. In contrast, the hepatic OVA did not stimulate OT-2 CD4+ T cells. In AAV/cOVA- and AAV/mtOVA-transduced mice, the transferred OT-2 cells maintained the naive T cell phenotypes, CD62Lhigh and CD69low, similar to what was observed in the GFP mice. Our preliminary data showed that hepatic expression of cOVA and mtOVA did not induce immune tolerance to inhibit antibody responses to OVA vaccination in two strains of mice. Together, our data provide insight into mechanisms that regulate T cell function in the liver environment. This information might be useful in future development of new immunomodulatory treatment for allergic and other autoimmune diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:18:51Z (GMT). No. of bitstreams: 1 ntu-101-R98424001-1.pdf: 2267238 bytes, checksum: 331eec23cae2c2785d6dee62507de982 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | CONTENTS.......................................................1
中文摘要 ..............................................................................3 ABSTRACT ..............................................................................5 CHAPTER 1. INTRODUCTION ...............................................................7 1 Immunotherapy for allergic diseases..................................................7 1.1 Allergic diseases introduction .....................................................7 1.2 T cell involvement .................................................................7 1.3 Current therapeutic strategies .....................................................8 2 Liver ..............................................................................10 2.1 Liver location and functions .....................................................10 2.2 Liver immunocyte composition......................................................10 2.3 Liver tolerance...................................................................10 2.4 Hepatocyte .......................................................................11 2.5 Antigen localization..............................................................12 3 Experimental design ................................................................13 3.1 Ovalbumin system .................................................................13 3.2 Adeno-associated virus............................................................14 4 Specific Aims.......................................................................15 CHAPTER 2. MATERIALS AND METHODS......................................................16 1 Plasmids construction ............................................................. 16 2 Cell lines and animals ............................................................ 16 3 Hepatocyte isolation .............................................................. 17 4 Ovalbumin transgene expression..................................................... 17 5 Adeno-associated virus vector preparation.......................................... 18 6 Cell adoptive transfer .............................................................18 7 Splenocytes and intrahepatic leukocytes isolation ..................................19 8 Flow cytometric analysis ...........................................................19 9 Immunohistological staining and ALT measurement ....................................20 10 In vivo cytotoxicity T lymphocyte assay............................................20 11 Statistics ........................................................................20 CHAPTER 3. RESULTS ...................................................................22 1 Optimization for OVA secretion .....................................................22 2 OVA expression in Huh-7 cells.......................................................22 3 OVA expression in hepatocytes of B6 mice ...........................................24 4 Hepatic OVA induced proliferation of OT-1 CD8+ T cells .............................24 5 Hepatic OVA activated OT-1 CD8+ T cells ............................................25 6 Hepatic OVA increased in vivo cytotoxicity of OT-1 cells............................26 7 Induction of liver inflammation by OT-1 CD8+ T cells in AAV/OVA-transduced mice.....27 8 Effects of hepatic OVA on OT-2 CD4+ T cells ........................................27 9 Effects of hepatic OVA on antibody responses induced by OVA immunization ...........27 CHAPTER 4. DISCUSSION ................................................................29 1 Suboptimal activation of OT-1 CD8+ T cells by hepatic OVA.......................... 29 2 OT-2 CD4+ T cells are not primed by hepatocytes ................................... 29 3 Relation between immune tolerance formation and the antigen subcellular localization ............ 30 4 AAV effect on liver tolerance formation .............................................31 5 Liver tolerance application to allergies and autoimmune diseases ...............31 CHAPER 5. REFERENCES .............................................................33 CHAPTER 6. FIGURE ................................................................39 Figure 1. Optimization of OVA secretion by different modifications............... 39 Figure 2. Generation of plasmids encoding secreted, membrane-bound, cytoplasmic, mitochondrial, or nuclear OVA .... 41 Figure 3. OVA expression in hepatocytes of C57BL/6J................................. 42 Figure 4. Stimulation of OT-1 T cell proliferation by OVA at different subcellular localization ............ 44 Figure 5. Down-regulation of CD62L and up-regulation of CD69 by activated OT-1 T cells...................... 46 Figure 6. In vivo cytotoxicity of OT-1+ CD8+ T cells in AAV/OVA-transduced mice............................... 48 Figure 7. Induction of liver inflammation by OT-1 CD8+ T cells in AAV/OVA- transducer mice.............49 Figure 8. OT-2 CD4+ T cell weren’t be activated by intracellular OVA in hepatocyte................... 50 Figure 9. Anti-OVA antibodies responses after OVA immunization ................ 51 | |
| dc.language.iso | en | |
| dc.subject | 肝臟免疫耐受性 | zh_TW |
| dc.subject | 卵白蛋白 | zh_TW |
| dc.subject | 氣喘 | zh_TW |
| dc.subject | 抗原細胞內分佈位置 | zh_TW |
| dc.subject | 免疫療療法 | zh_TW |
| dc.subject | ovalbumin | en |
| dc.subject | antigen subcellular localization | en |
| dc.subject | Immunotherapy | en |
| dc.subject | asthma | en |
| dc.subject | liver tolerance | en |
| dc.title | 胞內抗原位置對於肝臟T細胞反應之影響 | zh_TW |
| dc.title | Effect of Antigen Subcellular Localization on liver T cell response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭敏玲(Ming-Ling Kuo),莊雅惠(Ya-Hui Chuang) | |
| dc.subject.keyword | 免疫療療法,抗原細胞內分佈位置,肝臟免疫耐受性,氣喘,卵白蛋白, | zh_TW |
| dc.subject.keyword | Immunotherapy,antigen subcellular localization,liver tolerance,asthma,ovalbumin, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
