請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66000完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳蕙芬 | |
| dc.contributor.author | Yu-Chun Chen | en |
| dc.contributor.author | 陳郁君 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:18:31Z | - |
| dc.date.available | 2017-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-28 | |
| dc.identifier.citation | Bi, E. and J. Lutkenhaus. (1990). Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (sfiA). J. Bacteriol. 172: 5602-5609.
Bi, E. F. and J. Lutkenhaus (1991). FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349): 161-164. Bochtler, M., L. Ditzel, et al. (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. U S A 94(12): 6070-6074. Bochtler, M., C. Hartmann, et al. (2000). The structures of HsIU and theATP-dependent protease HsIU-HsIV. Nature 403(6771): 800-805. Bogyo, M., J. S. McMaster, et al. (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94(13): 6629-6634. Bukau, B., J. Weissman, et al. (2006). Molecular chaperones and protein quality control. Cell 125(3): 443-451. Chuang, S. E., V. Burland, et al. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134(1): 1-6. Cordell, S. C., E. J. Robinson, et al. (2003). Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci U S A 100(13):7889-7894. Ebina, Y., Y. Takahara, et al. (1983). LexA protein is a repressor of the colicin E1gene. J Biol Chem 258(21): 13258-13261 Fernandez De Henestrosa, A. R., T. Ogi, et al. (2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35(6):1560-1572. Fields, S. and O. Song (1989). A novel genetic system to detect protein-protein interactions. Nature 340(6230): 245-246. Freudl, R., G. Braun, et al. (1987). Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene 52(1):31-40. Frost, L. S., K. Ippen-Ihler, et al. (1994). Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58(2): 162-210. Gimeno, R. E., P. Espenshade, et al. (1995). SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J Cell Biol131(2): 325-338. Goldberg, A. L. (1992). The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203(1-2): 9-23. Gottesman, S., E. Halpern, et al. (1981). Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12. J Bacteriol 148(1): 265-273. Gottesman, S., P. Trisler, et al. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162: 1111-1119. Gottesman, S. and M. R. Maurizi (1992). Regulation by proteolysis:energy-dependent proteases and their targets. Microbiol Rev 56(4): 592-621. Gottesman, S., E. Roche, et al. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12: 1338-1347. Gottesman, S. (2003). Proteolysis in Bacterial Regulatory Circuits. Annu. Rev. Cell Dev. Biol. 19: 565-587. Guo, F., M. R. Maurizi, et al. (2002). Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J Biol Chem 277(48): 46743-46752. Gur, E. and R. T. Sauer (2008). Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 22(16): 2267-2277. Guzman, L.-M., D. Belin, et al. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177:4121-4130. Gyuris, J., E. Golemis, et al. (1993). Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75(4): 791-803. Hashimoto-Gotoh, T., M. Yamaguchi, et al. (2000). A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 241(1): 185-191. Herman, C., D. Thevenet, et al. (1998). Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12(9): 1348-1355. Higashitani, A., Y. Ishii, et al. (1997). Fuctional dissection of a cell-division inhibitor, SulA , of Escherichia coli and its negative regulation by Lon. Mol. Gen. Genet. 254:351-357. Huang, J., C. Cao, et al. (1996). Interaction between FtsZ and inhibitors of cell division. J. Bacteriol. 178: 5080-5085. Huisman, O. and R. D'Ari (1981). An inducible DNA replication-cell division coupling mechanism in E.coli. Nature 290: 797-799. Ishii, Y., S. Sonezaki, et al. (2000). Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J Biochem (Tokyo) 127(5): 837-844. Ishii, Y. and F. Amano (2001). Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem. J. 358(Pt 2): 473-480. Kanemori, M., K. Nishihara, et al. (1997). Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179(23): 7219-7225. Kanemori, M., H. Yanagi, et al. (1999a). Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J. Biol. Chem. 274(31): 22002-22007. Kanemori, M., H. Yanagi, et al. (1999b). The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J. Bacteriol. 181(12): 3674-3680. Katayama-Fujimura, Y., S. Gottesman, et al. (1987). A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem 262(10): 4477-4485. Kessel, M., W. F. Wu, et al. (1996). Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS. Lett.398(2-3): 274-278. Kuo, M. S., K. P. Chen, et al. (2004). Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 150(Pt 2): 437-446. Kwon, A. R., C. B. Trame, et al. (2004). Kinetics of protein substrate degradation by HslUV. J Struct Biol 146(1-2): 141-147. Lau-Wong, I. C., T. Locke, et al. (2008). Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol Microbiol 67(3): 516-527. Lee, Y. Y., C. F. Chang, et al. (2003). Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol 185(8):2393-2401. Lien, H. Y., R. S. Shy, et al. (2009a). Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system. J Bacteriol 191(13): 4218-4231. Lien, H. Y., C. H. Yu, et al. (2009b). Regulation of clpQY (hslVU) Gene Expression in Escherichia coli. Open Microbiol J 3: 29-39. Ma, J. and M. Ptashne (1987). A new class of yeast transcriptional activators. Cell 51(1): 113-119. Miller, J. H. (1972). Experiments in bacterial genetics.. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory. Missiakas, D., F. Schwager, et al. (1996). Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO. J. 15(24): 6899-6909. Mizusawa, S. and S. Gottesman (1983). Protein degradation in Escherichia coli: the long gnee controls the stability of the SulA protein. Proc. Natl. Acad. Sci. USA 96:7184-7189. Mukherjee, A., C. Cao, et al. (1998). Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A 95(6): 2885-2890. Park, E., Y. M. Rho, et al. (2005). Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem.280(24): 22892-22898. Park, E., J. W. Lee, et al. (2008). Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent. J Biol Chem 283(48): 33258-33266. Ramachandran, R., C. Hartmann, et al. (2002). Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. U S A 99(11):7396-7401. Rohrwild, M., O. Coux, et al. (1996). HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U S A 93(12): 5808-5813. Rohrwild, M., G. Pfeifer, et al. (1997). The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol. 4(2): 133-139. Sauer, R. T., D. N. Bolon, et al. (2004). Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119(1): 9-18. Schirmer, E. C., J. R. Glover, et al. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21(8): 289-296. Schoemaker, J. M., R. C. Gayda, et al. (1984). Regulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death. J Bacteriol 158(2): 551-561. Seemuller, E., A. Lupas, et al. (1995). Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268(5210): 579-582. Seong, I. S., J. Y. Oh, et al. (1999). ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS. Lett. 456(1): 211-214. Stevenson, G., K. Andrianopoulos, et al. (1996). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178: 4885-4893. Stout, V., A. Torres-Cabassa, et al. (1991). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173(5): 1738-1747. Torres-Cabassa, A. S. and S. Gottesman (1987). Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 169(3): 981-989. Wang, J., J. J. Song, et al. (2001a). Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9(2):177-184. Wang, J., J. J. Song, et al. (2001b). Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9(11): 1107-1116. Wang, J. M., J. A. Hartling, et al. (1997). The structure of ClpP at 2.3 angstrom resolution suggests a model for ATP-dependent proteolysis. Cell 91(4): 447-456. Wehland, M. and F. Bernhard (2000). The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275(10): 7013-7020. Wickner, S., M. R. Maurizi, et al. (1999).Posttranslational quality control: folding,refolding, and degrading proteins. Science 286(5446): 1888-1893. Wu, W.-F., Y. N. Zhou, et al. (1999). Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) Protease. J. Bacteriol. 181: 3681-3687. Yakamavich, J. A., T. A. Baker, et al. (2008). Asymmetric nucleotide transactions of the HslUV protease. J Mol Biol 380(5): 946-957. Yoo, S. J., Y. K. Shim, et al. (1997). Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease.FEBS Lett 412(1): 57-60. Yura, T., H. Nagai, et al. (1993). Regulation of the heat shock response in bacteria.Annu. Rev. Microbiol. 47: 321-350. Zwickl, P., W. Baumeister, et al. (2000). Dis-assembly lines: the proteasome and related ATPase-assisted proteases. Curr Opin Struct Biol 10(2): 242-250. 施如珊, (2004) 大腸桿菌熱休克蛋白ClpY I domain 之突變蛋白及其專一性基質辨識之研究. 台灣大學農業化學研究所碩士論文 彭聲翔, (2008) 大腸桿菌ClpY 對基質SulA 專一辨識位之研究. 台灣大學農業化學研究所碩士論文 翁于婷, (2009) 大腸桿菌熱休克蛋白ClpYQ 之基質SulA 被辨識區域特性之研究.台灣大學農業化學研究所碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66000 | - |
| dc.description.abstract | 大腸桿菌ClpYQ (HslUV) 蛋白酶為ATP 依賴型蛋白酶的一種,由49 kDa的ClpY 及19 kDa 的ClpQ 組合而成。這類蛋白酶在細胞中可降解不正常堆積的蛋白質或將折疊錯誤的蛋白質恢復正常構形,避免細胞受損。SulA 為一細胞分裂抑制者,當細胞遭遇自由基傷害或是曝露於UV 光下,造成DNA 受損,會誘發SulA 蛋白表現,抑制細胞分裂。目前已知ClpY 是辨識SulA C-端第20 - 30個具高疏水性的胺基酸片段,若將此片段之胺基酸點突變為親水性胺基酸,會降低SulA 與ClpY 之間的交互作用。然而,若將SulA C-端末20 個胺基酸去除,會使SulA 失去活性且成為一聚集之蛋白質。此外,RcsA 亦被認為是ClpYQ 之基質,但RcsA 是如何被ClpY 辨識,目前仍不清楚。
本研究以大腸桿菌表現蛋白質,利用西方墨點法測試ClpY 突變蛋白分解SulA ΔC20、SulA*F143A 的能力,發現ClpY 對於SulA*F143A 突變蛋白及失活且結構已打開之SulAΔC20 突變蛋白的辨識情形與辨識野生型SulA 蛋白相類似。也發現ClpY 第91 個胺基酸Tyrosine 之hydroxyl-group 對於基質的傳送,亦扮演了重要角色。以酵母菌雙雜交系統測試SulA C-端第20 - 30 個胺基酸點突變蛋白與SulA 之間的交互作用,發現這個區域點突變之活性,與能否形成dimer相關。以β-galactosidase 測試RcsA 蛋白於不同溫度下之活性與被ClpYQ 降解的情形,發現RcsA 蛋白的活性隨溫度上升而下降,且β-galactosidase units 值皆因ClpYQ 蛋白酶的出現而下降。之後再利用西方墨點法直接偵測RcsA 蛋白的累積量,在不同溫度下RcsA 的累積量皆相似,誘導ClpYQ 後,累積量皆有下降的趨勢,故RcsA 亦為ClpYQ 之基質。此外也發現,ClpY 對於SulA 及RcsA 之辨識是具相類似的機制。 | zh_TW |
| dc.description.abstract | ClpYQ (HslUV) is an ATP-dependent protease from Escherichia coli, composed of the 49 kDa ClpY and 19 kDa ClpQ. ClpQ peptidase. The degradation of the abnormal proteins or the misfolded proteins is accomplished by this protease to avoid cell damage. When the cells are exposed to UV light or damaged by free radical, the SOS response induced a cell division inhibitor, SulA. ClpY recognizes its C-terminal 129 - 149 hydrophobic amino acids. However, SulA becomes inactive and aggregated while it lacks the last 20 amino acids. Also it was observed that HA-SulA*F143A
was slowly degraded by ClpYQ. In addition, RcsA, as one of its substrates, is not clear for its direct targeted by ClpYQ. In this study, Western blot analysis was used to determine how ClpY is to recognize SulA ΔC20, and SulA*F143A. As results, ClpY recognizes SulAΔC20 and SulA*F143A in a similar way as it did to the wild-type SulA. We showed here that the C129 - 149 region of SulA is related to the monomer or dimer formation. The aromatic ring of ClpY91 (tyrosine,Tyr) is, however, known necessary for the translocation of substrates. In addition, through our study, we also showed that the hydroxyl-group of ClpY91 (Tyr) plays an important role in translocating of the substrates to ClpQ. From an alternative approach, we adopted the assays of β-galactosidase activity of cpsB::lacZ with pTH18kr-rcsA with or without ClpYQ. We found that the activity of RcsA decreases with an increased temperature, and the β-galactosidase levels decrease when ClpYQ is present. Through Western blot analysis, it was shown that the accumulation of RcsA was equal under the different temperature. However, it was reduced when expressing the ClpYQ protease. Therefore, RcsA is one of the substrates for ClpYQ. In addition, we also demonstrated that ClpY recognizes RcsA in a similar way as it did toward SulA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:18:31Z (GMT). No. of bitstreams: 1 ntu-101-R97623024-1.pdf: 2125109 bytes, checksum: 3ac3e0311e9e8a71ac9d7c356e520427 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書.......................................... i
誌謝..................................................... ii 摘要.................................................... iii Abstract................................................. iv 目錄.......................................................v 表目錄................................................. viii 圖目錄....................................................ix 附圖目錄...................................................x 壹、前言...................................................1 一、ATP 依賴蛋白酶.................................... 1 二、ClpYQ 蛋白酶...................................... 2 三、ClpYQ 蛋白酶基質.................................. 5 四、細胞分裂物SulA.................................... 7 五、蛋白酶與基質SulA.................................. 9 六、胞外莢膜調控蛋白RcsA............................. 13 七、研究動機與目的................................... 15 貳、材料與方法............................................16 一、實驗材料..........................................16 (一) 菌株與質體...................................16 (二) 藥品與試劑...................................17 (三) 器材設備.....................................18 (四) 分析軟體.....................................19 二、實驗方法..........................................19 (一) 一般實驗方法.................................19 (二) SulA (RcsA) 蛋白N 端3x FLAG-tag 標定.........21 (三) 酵母菌雙雜交系統分析 (Yeast two-hybrid system)......................................27 (四) 大腸桿菌選殖基因表現系統.....................30 (五) 西方墨點分析 (Western Blotting) .............33 參、結果..................................................40 一、ClpYQ 蛋白酶降解結構已被打開之基質................40 二、ClpYQ 對於3x FLAG - SulA*F143A 之降解.............41 (一) 3x FLAG-tag 對於SulA*F143A 之影響............41 (二) ClpY 之loop2 及pore1 site 突變對於3x FLAG - SulA*F143A 之結合及辨識......................42 (三) 3x FLAG - tag 對SulA 蛋白之影響..............42 三、SulA 之活性是否受單體或二聚體形式影響.............43 四、RcsA 為ClpYQ 蛋白酶之基質.........................45 (一) RcsA 蛋白於不同溫度之活性與累積量............45 (二)不同溫度下RcsA 被ClpYQ蛋白酶降解之情形........46 (三) ClpY辨識及傳送基質RcsA之區域.................46 肆、討論..................................................48 一、結構已打開之基質被ClpY 辨識.......................48 二、SulA 蛋白被ClpY 辨識區域之點突變及其降解情形......49 三、ClpY 之pore1 點突變對於基質SulA 及其辨識位之點突變之 影響..............................................50 四、SulA 突變蛋白形成Dimer 的與否是否與活性有關.......51 五、ClpYQ 蛋白酶降解RcsA 基質.........................51 (一) 溫度對於RcsA 蛋白的響........................51 (二) ClpY 辨識不同基質之途徑是否相似..............52 伍、結論..................................................53 陸、參考文獻..............................................54 | |
| dc.language.iso | zh-TW | |
| dc.subject | RcsA | zh_TW |
| dc.subject | 蛋白質辨識 | zh_TW |
| dc.subject | ATP依賴蛋白酶 | zh_TW |
| dc.subject | ClpYQ | zh_TW |
| dc.subject | SulA | zh_TW |
| dc.subject | RcsA | en |
| dc.subject | ATP-dependent protease | en |
| dc.subject | Protein recognition | en |
| dc.subject | ClpYQ | en |
| dc.subject | SulA | en |
| dc.title | 大腸桿菌熱休克蛋白酶ClpYQ分解基質之研究 | zh_TW |
| dc.title | The degradation of substrates, SulA and RcsA, by ClpYQ protease in Escherichia coli | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃良得,徐駿森,陳昭瑩,張世宗 | |
| dc.subject.keyword | ATP依賴蛋白酶,ClpYQ,SulA,RcsA,蛋白質辨識, | zh_TW |
| dc.subject.keyword | ATP-dependent protease,ClpYQ,SulA,RcsA,Protein recognition, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
