Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorFeng Linen
dc.contributor.author林鋒zh_TW
dc.date.accessioned2021-06-17T00:18:09Z-
dc.date.available2014-01-31
dc.date.copyright2012-06-29
dc.date.issued2012
dc.date.submitted2012-06-28
dc.identifier.citation參考資料
[1] B. Partoens and F. M. Peeters, 'From graphene to graphite: Electronic structure around the K point,' Physical Review B, vol. 74, Aug 2006.
[2] M. S. Dresselhaus, et al., 'Physics of Carbon Nanotubes,' Carbon, vol. 33, pp. 883-891, 1995.
[3] W. Harneit, 'Fullerene-based electron-spin quantum computer,' Physical Review A, vol. 65, Mar 2002.
[4] A. K. Geim, 'Graphene: Status and Prospects,' Science, vol. 324, pp. 1530-1534, Jun 19 2009.
[5] K. S. Novoselov, et al., 'Electric field effect in atomically thin carbon films,' Science, vol. 306, pp. 666-669, Oct 22 2004.
[6] F. Varchon, et al., 'Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate,' Physical Review Letters, vol. 99, Sep 21 2007.
[7] P. Sutter, 'EPITAXIAL GRAPHENE How silicon leaves the scene,' Nature Materials, vol. 8, pp. 171-172, Mar 2009.
[8] A. Y. Tontegode, 'Carbon on Transition-Metal Surfaces,' Progress in Surface Science, vol. 38, pp. 201-429, 1991.
[9] Q. K. Yu, et al., 'Graphene segregated on Ni surfaces and transferred to insulators,' Applied Physics Letters, vol. 93, pp. -, Sep 15 2008.
[10] X. S. Li, et al., 'Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,' Science, vol. 324, pp. 1312-1314, Jun 5 2009.
[11] A. H. Castro Neto, et al., 'The electronic properties of graphene,' Reviews of Modern Physics, vol. 81, p. 109, 2009.
[12] A. K. Geim and K. S. Novoselov, 'The rise of graphene,' Nature Materials, vol. 6, pp. 183-191, Mar 2007.
[13] J. H. Chen, et al., 'Intrinsic and extrinsic performance limits of graphene devices on SiO2,' Nature Nanotechnology, vol. 3, pp. 206-209, Apr 2008.
[14] E. McCann, 'Asymmetry gap in the electronic band structure of bilayer graphene,' Physical Review B, vol. 74, Oct 2006.
[15] T. Ohta, et al., 'Controlling the electronic structure of bilayer graphene,' Science, vol. 313, pp. 951-954, Aug 18 2006.
[16] Y. B. Zhang, et al., 'Direct observation of a widely tunable bandgap in bilayer graphene,' Nature, vol. 459, pp. 820-823, Jun 11 2009.
[17] L. Colombo, et al., 'Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,' Nano Letters, vol. 9, pp. 4359-4363, Dec 2009.
[18] V. P. Verma, et al., 'Large-area graphene on polymer film for flexible and transparent anode in field emission device,' Applied Physics Letters, vol. 96, May 17 2010.
[19] J. H. Ahn, et al., 'High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics,' Nano Letters, vol. 10, pp. 3464-3466, Sep 2010.
[20] M. Ritala and M. Leskela, 'Atomic layer deposition,' in Handbook of Thin Films, N. Hari Singh, et al., Eds., ed Burlington: Academic Press, 2002, pp. 103-159.
[21] M. H. Cho, et al., 'Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,' Applied Physics Letters, vol. 81, pp. 472-474, Jul 15 2002.
[22] M. D. Groner, et al., 'Low-temperature Al2O3 atomic layer deposition,' Chemistry of Materials, vol. 16, pp. 639-645, Feb 24 2004.
[23] T. Kobayashi, et al., 'Channel-Length-Dependent Field-Effect Mobility and Carrier Concentration of Reduced Graphene Oxide Thin-Film Transistors,' Small, vol. 6, pp. 1210-1215, Jun 6 2010.
[24] S. Kim, et al., 'Realization of a high mobility dual-gated graphene field-effect transistor with Al(2)O(3) dielectric,' Applied Physics Letters, vol. 94, Feb 9 2009.
[25] Y. M. Lin, et al., 'Dual-Gate Graphene FETs With f(T) of 50 GHz,' Ieee Electron Device Letters, vol. 31, pp. 68-70, Jan 2010.
[26] D. B. Farmer, et al., 'Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors,' Nano Letters, vol. 9, pp. 4474-4478, Dec 2009.
[27] Y. M. Lin, et al., 'Operation of Graphene Transistors at Gigahertz Frequencies,' Nano Letters, vol. 9, pp. 422-426, Jan 2009.
[28] Y. Huang, et al., 'High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 6711-6715, Apr 13 2010.
[29] Y. Huang, et al., 'High-Performance Top-Gated Graphene-Nanoribbon Transistors Using Zirconium Oxide Nanowires as High-Dielectric-Constant Gate Dielectrics,' Advanced Materials, vol. 22, pp. 1941-+, May 4 2010.
[30] M. C. Lemme, et al., 'A graphene field-effect device,' Ieee Electron Device Letters, vol. 28, pp. 282-284, Apr 2007.
[31] W. J. Zhu, et al., 'Silicon Nitride Gate Dielectrics and Band Gap Engineering in Graphene Layers,' Nano Letters, vol. 10, pp. 3572-3576, Sep 2010.
[32] X. F. Duan and L. Liao, 'Graphene-dielectric integration for graphene transistors,' Materials Science & Engineering R-Reports, vol. 70, pp. 354-370, Nov 22 2010.
[33] I. Meric, et al., 'Current saturation in zero-bandgap, top-gated graphene field-effect transistors,' Nat Nano, vol. 3, pp. 654-659, 2008.
[34] http://www.tungsten.com/ebevap.html
[35] B. Ozyilmaz, et al., 'Electronic transport in locally gated graphene nanoconstrictions,' Applied Physics Letters, vol. 91, Nov 5 2007.
[36] A. F. Morpurgo, et al., 'Gate-induced insulating state in bilayer graphene devices,' Nature Materials, vol. 7, pp. 151-157, Feb 2008.
[37] S. P. Tay and J. P. Ellul, 'Thin Gate and Analog Capacitor Dielectrics for Submicron Device Fabrication,' Journal of Electronic Materials, vol. 21, pp. 45-55, Jan 1992.
[38] H. M. Wang, et al., 'Hysteresis of Electronic Transport in Graphene Transistors,' Acs Nano, vol. 4, pp. 7221-7228, Dec 2010.
[39] P. Joshi, et al., 'Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates,' Journal of Physics-Condensed Matter, vol. 22, pp. -, Aug 25 2010.
[40] M. Lafkioti, et al., 'Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions,' Nano Letters, vol. 10, pp. 1149-1153, Apr 2010.
[41] K. S. Moon, et al., 'Electron ejection from MgO thin films by low energy noble gas ions: Energy dependence and initial instability of the secondary electron emission coefficient,' Journal of Applied Physics, vol. 86, pp. 4049-4051, Oct 1 1999.
[42] J. H. Chen, et al., 'Defect Scattering in Graphene,' Physical Review Letters, vol. 102, Jun 12 2009.
[43] J. H. Chen, et al., 'Charged-impurity scattering in graphene,' Nature Physics, vol. 4, pp. 377-381, 2008.
[44] K. Brenner and R. Murali, 'Single step, complementary doping of graphene,' Applied Physics Letters, vol. 96, pp. -, Feb 8 2010.
[45] P. L. Levesque, et al., 'Probing Charge Transfer at Surfaces Using Graphene Transistors,' Nano Letters, vol. 11, pp. 132-137, Jan 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65990-
dc.description.abstract本論文探究電子槍蒸鍍技術應用在雙閘極石墨烯元件之可行性,實驗先對三種常用之絕緣材料Al2O3、SiO2、MgO進行漏電及電容分析,發現Al2O3及MgO蒸鍍出的薄膜有較小的漏電流,適宜做為閘極絕緣層之材料。並在不同環境下對石墨烯元件進行量測並比較;在大氣環境下及氮氣吹拂環境下,易因水氣的吸附造成量測上的誤差。而真空環境能避免水氣的問題並減少量測上的雜訊產生。
而在真空環境下,探究三種絕緣材料對於石墨烯元件的影響。電子槍蒸鍍技術之絕緣材料會降低石墨烯元件的載子移動率,而蒸鍍過程中的charge trapping會造成石墨烯元件電中性點(charge neutral point;CNP)的變動,而透過HSQ作為蒸鍍絕緣材料及石墨烯當中的緩衝層,對於電中性點的變動有所改善。最後將Al2O3、MgO及HSQ與MgO複合結構做成雙閘極石墨烯元件。並透過上下閘極電場的施加與調變進行雙層石墨烯能間隙的調控。
zh_TW
dc.description.abstractWe investigated the effect of e-beam evaporated dielectric layers on the electrical performance of bilayer graphene. The comparison of leakage current and capacitance-voltage characteristics in MOS (metal–oxide–semiconductor) structure with various e-beam evaporated dielectric layers such as, Al2O3, SiO2 and MgO is presented. For MOS with Al2O3 and MgO, the leakage current density is low compared with MOS with SiO2 . Therefore, Al2O3 and MgO were chosen as the gate dielectric layer for dual-gated bilayer graphene devices.
The graphene device measurement in different environment was carried out .We found that water vapor severely affected the charge neutral point (CNP) and the carrier mobility of the graphene when the measurement was performed in air and in N2. Therefore, the measurement in vacuum was preferred to avoid the influence of water vapor.
We found that all three e-beam evaporated dielectric layers decrease the mobility. And also shift the CNP of the graphene device toward negative bottom gate bias. Introducing HSQ buffer layer prior to the deposition of dielectric layer could compensate the shift of the CNP. Finally, dual-gated BLG devices were fabricated with Al2O3 , MgO and HSQ+ MgO as dielectric layers, respectively. The band gap opening of these devices was observed by properly tuning the top gate and bottom gate voltages.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:18:09Z (GMT). No. of bitstreams: 1
ntu-101-R97941049-1.pdf: 1330992 bytes, checksum: ecc6d8dd811d877bad9e3a127bdd76bb (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
Abstact I
中文摘要 II
圖目錄 V
表目錄 VII
第一章 介紹及文獻回顧 1
1.1 石墨烯(Graphene)之發現及性質 1
1.1.1 石墨烯介紹 1
1.1.2 各種石墨烯之製作 1
1.2 石墨烯性質 3
1.2.1 單層石墨烯的電子性質 3
1.2.2 雙層石墨烯之電子性質 5
1.3 文獻回顧及探討 6
1.4 研究動機 9
1.5 論文架構 9
第二章 實驗方法及量測 10
2.1 使用儀器 10
2.1.1 電子束蒸鍍 10
2.1.2 電磁鐵系統 11
2.2 元件製作 12
2.2.1 石墨烯元件之製作 12
2.2.2 絕緣環境量測之石墨烯元件之製作 13
2.2.3 上閘極(top gate)石墨烯元件之製作 14
2.2.4 HSQ緩衝層(buffer layer)之製作 14
2.3 量測及分析 16
2.3.1 漏電及電容分析 16
2.3.2 石墨烯以場效載子注入之載子移動率量測 17
2.3.3 石墨烯以霍爾效應之載子移動率量測 19
2.3.4 改變石墨烯能階之量測 19
第三章 絕緣層性質探討及量測環境對石墨烯元件之影響 22
3.1 各種絕緣層之漏電分析及電容分析 22
3.1.1 各種絕緣層之漏電分析 22
3.1.2 各種絕緣層之電容分析 25
3.2 絕緣層對石墨烯元件之影響及分析 27
3.2.1 在大氣環境下之量測之石墨烯元件 27
3.2.2 石墨烯元件在氮氣吹拂環境下量測 32
3.2.3 不同環境對於石墨烯元件量測之影響 35
3.2.4 在不同量測環境下CNP變化之討論 37
第四章 在真空環境下石墨烯元件之量測 38
4.1 不同絕緣層在真空環境下之量測 38
4.1.1 不同絕緣層對石墨烯之影響 38
4.1.2 HSQ緩衝層對石墨烯元件之影響 45
4.2 雙閘極元件之量測 50
4.2.1 絕緣材料之選用 50
4.2.2 以MgO為上閘極絕緣層之雙閘極石墨烯元件 50
4.2.3 以Al2O3為上閘極絕緣層之雙閘極石墨烯元件 52
4.2.4 以HSQ及MgO複合結構為上閘極絕緣層之雙閘極石墨烯元件 53
第五章 結論及未來展望 58
5.1 結論 58
5.2 未來展望 58
參考資料 59
dc.language.isozh-TW
dc.subject雙層石墨烯zh_TW
dc.subject電子槍蒸鍍zh_TW
dc.subject絕緣層zh_TW
dc.subjectdielectric layersen
dc.subjectbilayer grapheneen
dc.subjecte-beam evaporationen
dc.title電子槍蒸鍍之絕緣層對雙層石墨烯電性之影響zh_TW
dc.titleThe effect of e-beam evaporated dielectric layers on the electrical performance of bilayer grapheneen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅(Chih-I Wu),李偉立(Wei-Li Lee),陳建彰(Jian-Zhang Chen)
dc.subject.keyword電子槍蒸鍍,絕緣層,雙層石墨烯,zh_TW
dc.subject.keyworde-beam evaporation,dielectric layers,bilayer graphene,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2012-06-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved