Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65979
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李財坤(Tsai-Kun Li)
dc.contributor.authorShih-Yun Huangen
dc.contributor.author黃詩勻zh_TW
dc.date.accessioned2021-06-17T00:17:36Z-
dc.date.available2012-09-24
dc.date.copyright2012-09-24
dc.date.issued2012
dc.date.submitted2012-06-29
dc.identifier.citationAlchanati, I., C. Teicher, et al. (2009). 'The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation of Top2alpha cleavage complex - a potentially new drug target.' PLoS One 4(12): e8104.
Austin, C. A. and K. L. Marsh (1998). 'Eukaryotic DNA topoisomerase II beta.' Bioessays 20(3): 215-226.
Austin, C. A., J. H. Sng, et al. (1993). 'Novel HeLa topoisomerase II is the II beta isoform: complete coding sequence and homology with other type II topoisomerases.' Biochim Biophys Acta 1172(3): 283-291.
Baker, N. M., R. Rajan, et al. (2009). 'Structural studies of type I topoisomerases.' Nucleic Acids Res 37(3): 693-701.
Baker, S. D., R. M. Wadkins, et al. (1995). 'Cell cycle analysis of amount and distribution of nuclear DNA topoisomerase I as determined by fluorescence digital imaging microscopy.' Cytometry 19(2): 134-145.
Barthelmes, H. U., M. Habermeyer, et al. (2004). 'TDP1 overexpression in human cells counteracts DNA damage mediated by topoisomerases I and II.' J Biol Chem 279(53): 55618-55625.
Berger, J. M., S. J. Gamblin, et al. (1996). 'Structure and mechanism of DNA topoisomerase II.' Nature 379(6562): 225-232.
Bertolini, G., L. Roz, et al. (2009). 'Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment.' Proc Natl Acad Sci U S A 106(38): 16281-16286.
Cao, L., J. Bombard, et al. (2011). 'BMI1 as a novel target for drug discovery in cancer.' J Cell Biochem 112(10): 2729-2741.
Champoux, J. J. (2001). 'DNA topoisomerases: structure, function, and mechanism.' Annu Rev Biochem 70: 369-413.
Cheng, T. J., P. G. Rey, et al. (2002). 'Kinetic studies of human tyrosyl-DNA phosphodiesterase, an enzyme in the topoisomerase I DNA repair pathway.' Eur J Biochem 269(15): 3697-3704.
Cortes Ledesma, F., S. F. El Khamisy, et al. (2009). 'A human 5'-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage.' Nature 461(7264): 674-678.
Davies, D. R., H. Interthal, et al. (2002). 'Insights into substrate binding and catalytic mechanism of human tyrosyl-DNA phosphodiesterase (Tdp1) from vanadate and tungstate-inhibited structures.' J Mol Biol 324(5): 917-932.
De Vos, M., V. Schreiber, et al. (2012). 'The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art.' Biochem Pharmacol 84(2): 137-146.
Debethune, L., G. Kohlhagen, et al. (2002). 'Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase.' Nucleic Acids Res 30(5): 1198-1204.
Desai, S. D., L. F. Liu, et al. (1997). 'Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin.' J Biol Chem 272(39): 24159-24164.
Desai, S. D., H. Zhang, et al. (2003). 'Transcription-dependent degradation of topoisomerase I-DNA covalent complexes.' Mol Cell Biol 23(7): 2341-2350.
Deweese, J. E., M. A. Osheroff, et al. (2008). 'DNA Topology and Topoisomerases: Teaching a 'Knotty' Subject.' Biochem Mol Biol Educ 37(1): 2-10.
Dong, P., M. Kaneuchi, et al. (2011). 'MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1.' Mol Cancer 10: 99.
El-Khamisy, S. F., G. M. Saifi, et al. (2005). 'Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1.' Nature 434(7029): 108-113.
Esguerra, C. V., L. Nelles, et al. (2007). 'Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination.' Development 134(24): 4381-4393.
Fan, J. R., A. L. Peng, et al. (2008). 'Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses.' DNA Repair (Amst) 7(3): 452-463.
Forterre, P., S. Gribaldo, et al. (2007). 'Origin and evolution of DNA topoisomerases.' Biochimie 89(4): 427-446.
Gagne, J. P., M. Isabelle, et al. (2008). 'Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes.' Nucleic Acids Res 36(22): 6959-6976.
Grabbe, C. and I. Dikic (2009). 'Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins.' Chem Rev 109(4): 1481-1494.
Hahne, J. C., A. F. Okuducu, et al. (2008). 'The transcription factor ETS-1: its role in tumour development and strategies for its inhibition.' Mini Rev Med Chem 8(11): 1095-1105.
Hiasa, H., D. O. Yousef, et al. (1996). 'DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex.' J Biol Chem 271(42): 26424-26429.
Howard, M. T., S. H. Neece, et al. (1994). 'Disruption of a topoisomerase-DNA cleavage complex by a DNA helicase.' Proc Natl Acad Sci U S A 91(25): 12031-12035.
Hsiang, Y. H., R. Hertzberg, et al. (1985). 'Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.' J Biol Chem 260(27): 14873-14878.
Hsiang, Y. H., M. G. Lihou, et al. (1989). 'Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin.' Cancer Res 49(18): 5077-5082.
Huang, T. H., H. C. Chen, et al. (2010). 'Cellular processing determinants for the activation of damage signals in response to topoisomerase I-linked DNA breakage.' Cell Res 20(9): 1060-1075.
Huber, G. F., A. Albinger-Hegyi, et al. (2011). 'Expression patterns of Bmi-1 and p16 significantly correlate with overall, disease-specific, and recurrence-free survival in oropharyngeal squamous cell carcinoma.' Cancer.
Interthal, H., H. J. Chen, et al. (2005). 'Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages.' J Biol Chem 280(43): 36518-36528.
Interthal, H., H. J. Chen, et al. (2005). 'SCAN1 mutant Tdp1 accumulates the enzyme--DNA intermediate and causes camptothecin hypersensitivity.' EMBO J 24(12): 2224-2233.
Interthal, H., J. J. Pouliot, et al. (2001). 'The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily.' Proc Natl Acad Sci U S A 98(21): 12009-12014.
Ioanoviciu, A., S. Antony, et al. (2005). 'Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor complex as determined by X-ray crystallographic analysis.' J Med Chem 48(15): 4803-4814.
Javle, M. and N. J. Curtin (2011). 'The role of PARP in DNA repair and its therapeutic exploitation.' Br J Cancer 105(8): 1114-1122.
Kaminska, B., A. Wesolowska, et al. (2005). 'TGF beta signalling and its role in tumour pathogenesis.' Acta Biochim Pol 52(2): 329-337.
Kennedy, R. D. and A. D. D'Andrea (2006). 'DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes.' J Clin Oncol 24(23): 3799-3808.
Kimura, K., M. Saijo, et al. (1994). 'Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phase.' J Biol Chem 269(2): 1173-1176.
Laponogov, I., M. K. Sohi, et al. (2009). 'Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases.' Nat Struct Mol Biol 16(6): 667-669.
Larsen, A. K., A. E. Escargueil, et al. (2003). 'Catalytic topoisomerase II inhibitors in cancer therapy.' Pharmacol Ther 99(2): 167-181.
Lee, N. K. and S. Y. Lee (2002). 'Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs).' J Biochem Mol Biol 35(1): 61-66.
Leiros, I., F. Secundo, et al. (2000). 'The first crystal structure of a phospholipase D.' Structure 8(6): 655-667.
Li, C., S. Fan, et al. (2011). 'Oncogenic role of EAPII in lung cancer development and its activation of the MAPK-ERK pathway.' Oncogene 30(35): 3802-3812.
Li, C., S. Y. Sun, et al. (2011). 'Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond.' Cell Cycle 10(19): 3274-3283.
Li, T. K. and L. F. Liu (2001). 'Tumor cell death induced by topoisomerase-targeting drugs.' Annu Rev Pharmacol Toxicol 41: 53-77.
Liu, L., L. G. Andrews, et al. (2006). 'Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death.' Oncogene 25(31): 4370-4375.
Liu, L. F., S. D. Desai, et al. (2000). 'Mechanism of action of camptothecin.' Ann N Y Acad Sci 922: 1-10.
Londin, E. R., H. Meng, et al. (2003). 'A transcription map of the 6p22.3 reading disability locus identifying candidate genes.' BMC Genomics 4(1): 25.
Luo, X. and W. L. Kraus (2012). 'On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1.' Genes Dev 26(5): 417-432.
Magan, N., R. J. Isaacs, et al. (2012). 'Treatment with the PARP-inhibitor PJ34 causes enhanced doxorubicin-mediated cell death in HeLa cells.' Anticancer Drugs 23(6): 627-637.
Mandraju, R., A. Chekuri, et al. (2011). 'Topoisomerase IIbeta associates with Ku70 and PARP-1 during double strand break repair of DNA in neurons.' Arch Biochem Biophys 516(2): 128-137.
Mao, Y., S. D. Desai, et al. (2001). '26 S proteasome-mediated degradation of topoisomerase II cleavable complexes.' J Biol Chem 276(44): 40652-40658.
Maxwell, A. and D. M. Lawson (2003). 'The ATP-binding site of type II topoisomerases as a target for antibacterial drugs.' Curr Top Med Chem 3(3): 283-303.
Mitscher, L. A. (2005). 'Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents.' Chem Rev 105(2): 559-592.
Mizuuchi, K., L. M. Fisher, et al. (1980). 'DNA gyrase action involves the introduction of transient double-strand breaks into DNA.' Proc Natl Acad Sci U S A 77(4): 1847-1851.
Molofsky, A. V., S. He, et al. (2005). 'Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways.' Genes Dev 19(12): 1432-1437.
Morham, S. G., K. D. Kluckman, et al. (1996). 'Targeted disruption of the mouse topoisomerase I gene by camptothecin selection.' Mol Cell Biol 16(12): 6804-6809.
Murai, J., S. Y. Huang, et al. (2012). 'Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damages induced by topoisomerases I and II, and base alkylation in vertebrate cells.' J Biol Chem.
Nitiss, J. L. (2002). 'DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage.' Curr Opin Investig Drugs 3(10): 1512-1516.
Nitiss, J. L. (2009). 'Targeting DNA topoisomerase II in cancer chemotherapy.' Nat Rev Cancer 9(5): 338-350.
Nitiss, K. C., M. Malik, et al. (2006). 'Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage.' Proc Natl Acad Sci U S A 103(24): 8953-8958.
Pei, H., J. S. Yordy, et al. (2003). 'EAPII interacts with ETS1 and modulates its transcriptional function.' Oncogene 22(18): 2699-2709.
Pleschke, J. M., H. E. Kleczkowska, et al. (2000). 'Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins.' J Biol Chem 275(52): 40974-40980.
Plo, I., Z. Y. Liao, et al. (2003). 'Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdp1) for the repair of topoisomerase I-mediated DNA lesions.' DNA Repair (Amst) 2(10): 1087-1100.
Pommier, Y., J. M. Barcelo, et al. (2006). 'Repair of topoisomerase I-mediated DNA damage.' Prog Nucleic Acid Res Mol Biol 81: 179-229.
Pommier, Y. and C. Marchand (2005). 'Interfacial inhibitors of protein-nucleic acid interactions.' Curr Med Chem Anticancer Agents 5(4): 421-429.
Pouliot, J. J., K. C. Yao, et al. (1999). 'Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes.' Science 286(5439): 552-555.
Pype, S., W. Declercq, et al. (2000). 'TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation.' J Biol Chem 275(24): 18586-18593.
Rodrigues-Lima, F., M. Josephs, et al. (2001). 'Sequence analysis identifies TTRAP, a protein that associates with CD40 and TNF receptor-associated factors, as a member of a superfamily of divalent cation-dependent phosphodiesterases.' Biochem Biophys Res Commun 285(5): 1274-1279.
Rosell, R., R. V. Lord, et al. (2002). 'DNA repair and cisplatin resistance in non-small-cell lung cancer.' Lung Cancer 38(3): 217-227.
Shea, M. E. and H. Hiasa (2000). 'Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes.' J Biol Chem 275(19): 14649-14658.
Siddique, H. R. and M. Saleem (2012). 'Role of BMI1, a Stem Cell Factor, in Cancer Recurrence and Chemoresistance: Preclinical and Clinical Evidences.' Stem Cells 30(3): 372-378.
Siegel, P. M. and J. Massague (2003). 'Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer.' Nat Rev Cancer 3(11): 807-821.
Song, L. B., M. S. Zeng, et al. (2006). 'Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells.' Cancer Res 66(12): 6225-6232.
Stewart, A. F. and G. Schutz (1987). 'Camptothecin-induced in vivo topoisomerase I cleavages in the transcriptionally active tyrosine aminotransferase gene.' Cell 50(7): 1109-1117.
Stuckey, J. A. and J. E. Dixon (1999). 'Crystal structure of a phospholipase D family member.' Nat Struct Biol 6(3): 278-284.
Takashima, H., C. F. Boerkoel, et al. (2002). 'Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy.' Nat Genet 32(2): 267-272.
Tsao, Y. P., A. Russo, et al. (1993). 'Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system.' Cancer Res 53(24): 5908-5914.
Tsujishita, Y., S. Guo, et al. (2001). 'Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase.' Cell 105(3): 379-389.
Turner, D. P., V. J. Findlay, et al. (2007). 'Defining ETS transcription regulatory networks and their contribution to breast cancer progression.' J Cell Biochem 102(3): 549-559.
Vavrova, A. and T. Simunek (2012). 'DNA topoisomerase IIbeta: A player in regulation of gene expression and cell differentiation.' Int J Biochem Cell Biol.
Wang, J. C. (1996). 'DNA topoisomerases.' Annu Rev Biochem 65: 635-692.
Wang, J. C. (2002). 'Cellular roles of DNA topoisomerases: a molecular perspective.' Nat Rev Mol Cell Biol 3(6): 430-440.
Wang, Y., P. Zhang, et al. (2010). 'TRAF-mediated regulation of immune and inflammatory responses.' Sci China Life Sci 53(2): 159-168.
Warburton, P. E. and W. C. Earnshaw (1997). 'Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function.' Bioessays 19(2): 97-99.
Whitehouse, C. J., R. M. Taylor, et al. (2001). 'XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair.' Cell 104(1): 107-117.
Wiederschain, D., L. Chen, et al. (2007). 'Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis.' Mol Cell Biol 27(13): 4968-4979.
Wilstermann, A. M. and N. Osheroff (2003). 'Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes.' Curr Top Med Chem 3(3): 321-338.
Wobbe, C. R., F. B. Dean, et al. (1987). 'In vitro replication of DNA containing either the SV40 or the polyoma origin.' Philos Trans R Soc Lond B Biol Sci 317(1187): 439-453.
Wu, J. and L. F. Liu (1997). 'Processing of topoisomerase I cleavable complexes into DNA damage by transcription.' Nucleic Acids Res 25(21): 4181-4186.
Xiao, H., Y. Mao, et al. (2003). 'The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway.' Proc Natl Acad Sci U S A 100(6): 3239-3244.
Xu, J., S. Lamouille, et al. (2009). 'TGF-beta-induced epithelial to mesenchymal transition.' Cell Res 19(2): 156-172.
Yang, M. H., D. S. Hsu, et al. (2010). 'Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition.' Nat Cell Biol 12(10): 982-992.
Yang, S. W., A. B. Burgin, Jr., et al. (1996). 'A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases.' Proc Natl Acad Sci U S A 93(21): 11534-11539.
Yang, X., W. Li, et al. (2000). 'DNA topoisomerase IIbeta and neural development.' Science 287(5450): 131-134.
Zeng, Z., F. Cortes-Ledesma, et al. (2011). 'TDP2/TTRAP is the major 5'-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage.' J Biol Chem 286(1): 403-409.
Zhang, H., J. M. Barcelo, et al. (2001). 'Human mitochondrial topoisomerase I.' Proc Natl Acad Sci U S A 98(19): 10608-10613.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65979-
dc.description.abstract拓樸異構酶(topoisomerase I/II/III, TOP I/II/III)可以藉催化DNA短暫的斷裂和重新黏合而解決DNA的拓樸結構問題。另外,拓樸酶亦被證明為治療癌症及抗生素的藥物標靶;此類藥物可以阻止酵素催化的DNA重新黏合,進而穩定拓樸異構酶可切性複合體(topoisomerase cleavable complex, TOPcc),造成DNA斷裂及細胞死亡。TOPcc是一個DNA和拓樸酶以共價鍵連結的複合體(蛋白質上的酪胺酸和DNA上的磷酸共價連結);值得注意的是,DNA斷點是被包覆在蛋白質裡的,因此必須經過細胞處理路徑(cellular processing pathway)讓斷點裸露出來以進行修補及其他訊息傳遞。TOP1會經由酪胺酸和DNA 3’端的磷酸形成共價鍵造成單股DNA斷裂;TOP2則是經由酪胺酸和DNA 5’端的磷酸形成共價鍵造成雙股DNA斷裂。此外,許多報導指出,人類酪胺酸DNA磷脂酶(human Tyrosyl-DNA Phosphodiesterase 1/2, hTDP1/2)可以藉由切斷拓樸酶和DNA間的共價鍵而使DNA斷點裸露出來,才能啟動DNA損傷反應及路徑(DNA damage response, DDR)。然而,我們對於人類細胞hTDP1/2處理TOP2cc的功能及特異性以及hTDP1/2和細胞處理路徑(TIP : 轉錄起始的處理,RIP : DNA複製起始的處理)間的關係依然不清楚。為了釐清這些問題,我們利用RNA干擾技術、強制蛋白表現以及藥物處理調控…等方法來探討hTDP1/2對於TOPcc所引發的DNA damage所造成的影響以及DNA的傷害反應。我們的結果證明,在人類細胞中hTDP1參與在TOP1cc的修復過程,而hTDP1和hTDP2皆參與在TOP2cc的修復過程。此外,在修復TOP2cc所造成的DNA損害的過程當中,hTDP1和hTDP2可能參與在TIP和RIP的路徑中,且作用在TOP2cc上的酵素降解之後,切掉最後的磷酸酪胺酸共價鍵。此外,缺少hTDP1或hTDP2的細胞對於針對TOP2的藥物皆有較高的感受性。綜合以上實驗結果,我們的研究證實hTDP1/2在解決TOP2cc所造成的DNA斷裂中所扮演的角色;此外,TOP和TDP藥物的合併使用或許也可以更有效治療癌症。zh_TW
dc.description.abstractTopoisomerases (TOP1/2/3) can solve the topological problems of DNA through transient breakage and religation reactions and has become excellent targets of anticancer drugs. Drugs targeting topoisomerases induce the formation of topoisomerase cleavable complex (TOPcc) in a special form of protein-embedded, phosphotyrosyl-linked DNA breakage and hence blocking the accessibility of signaling and repair proteins. During the formation of TOPcc, TOP1 and TOP2 covalently links to DNA though a 3’-phosphotyrosyl bond and 5’-phosphotyrosyl bond, respectively. Tyrosyl-DNA phosphodiesterases (TDP1/2) have recently been reported to process the hidden DNA breakage in TOPcc into uncovered DNA lesions by mediating the cleavage of enzyme-DNA phosphotyrosyl linkage. However, the specificity to 3’- and 5’-phosphotyrosyl linkage and corresponding functions of hTDP1/2 in processing of TOP1/2cc remain ill defined. Toward this aim, we used RNA interference (RNAi) technology and overexpression system to investigate the roles of hTDP1/2 in the TOP1/2cc-mediated DNA breakage and DNA damage responses (DDR). In addition, the potential relationship among hTDP1/2, transcription- and replication-initiated processing (TIP and RIP) pathways are also studied. We found that hTDP1 contributes to the repair of TOP1cc while hTDP1 and hTDP2 both participate in the repair of TOP2cc in human cells. Moreover, our results also suggest that hTDP1/2 are involved in TOP2cc-mediated DDR that are activated by transcription- and replication-initiated processing pathway. Consistently, both hTDP1- and hTDP2-deficient cells are hypersensitive to TOP2-targeting drugs. Together, our studies not only demonstrated the distinctive roles of hTDP1/2 in the processing of TOP1/2cc but also suggest a novel combination therapeutic strategy of using TOP1/2- and TDP1/2-targeting agents.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:17:36Z (GMT). No. of bitstreams: 1
ntu-101-R99445125-1.pdf: 2539679 bytes, checksum: ed94d1a9cac47e169431ea1226f239b0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審訂書…………………………………………………………………………i
ACKNOWLEDGEMENTS…………………….…………………………………ii
中文摘要…….………………………………………………………………………….iii
ABSTRACT……………………………………………………………………………iv
CONTENTS………………………………………………………………………........v
INTRODUCTION……………………………………………………………………..1
1. DNA topoisomerases and topoisomerase cleavable complex (TOPcc)………..1
1.1 Type I DNA topoisomerases……………………………………..……………2
1.2 Type II DNA topoisomerases………………………………………..…………2
1.3 DNA topoisomerases-targeting drugs and their importance in cancer therapy and bacterial infections………………………………………………………3
2. The cellular processing pathways and the repairing mechanisms of TOP1/2cc-mediated DNA damages………………………………………….....5
2.1 Cellular processing pathways of TOP1/2cc-mediated DNA damages…………5
2.1.1 Transcription-initiated processing (TIP) pathway…………………………5
2.1.2 B cell-specific Moloney murine leukemia virus intergration site 1(Bmi1)..6
2.1.3 Replication-initiated processing (RIP) pathway…………………………7
2.2 The repairing mechanisms of TOP1/2cc-mediated DNA damages…………….8
2.2.1 Tyrosyl-DNA phosphodiesterase 1 (TDP1)……………………………….8
2.2.1.1 Structure and biological functions of TDP1…………………………8
2.2.1.2 Spinocere ataxia with axonal neuropathy……………………………..9
2.2.1.3 Tyrosyl-DNA phosphodiesterase 1 repair pathway…………………9
2.2.2 Tyrosyl-DNA phosphodiesterase 2 (TDP2)……………………………10
2.2.2.1 Structure of TDP2………………………………………………….11
2.2.2.2 Biological functions of TDP2 – transcription regulation…………..11
2.2.2.3 Biological functions of TDP2 – signal transduction………………12
2.2.2.4 Biological functions of TDP2 – tyrosyl-DNA phosphodiesterase activity……………………………………………………………12
2.2.3 Poly(ADP-ribose)polymerase-1 (PARP-1)………………………………13
SPECIFIC AIMS……………………………………………………………………15
MATERIALS AND METHODS…………………………………………………16
- Chemicals and Cell Culture………………………………………………………16
- RNA interference (RNAi) knockdown technology………………………………..16
- Plasmids and Cell Transfection…………………………………………………….17
- Antibodies and Western blot analysis…………………………………………….17
- In Vivo complexes of Enzyme (ICE) bioassay…………………………………….18
- Alkaline single cell gel electrophoresis (Comet) assay…………………………….19
- Colony formation assay…………………………………………………………….20
- Immunofluorescence assay (IFA)…………………………………………………..20
- Quantitative and statistic analysis…………………………………………………21
RESULTS……………………………………………………………………………22
- Establishment of human TDP1 (hTDP1)- and human TDP2 (hTDP2)-specific knockdown and overexpressing in HCT116 cell line………………………………22
- The protective role of hTDP1 and hTDP2 in protecting TOP2-mediated cell killing by colony formation assay in HCT116 cells…………………………………………22
- The levels of chromosome DNA breakage induced by the TOP2-targeting drugs were higher in both the shTDP1 and shTDP2 cells………………………………….23
- The γH2AX activation levels induced by TOP2-targeting drugs are increased in HCT116 cells deficient in hTDP1 or hTDP2………………………………………24
- Transient knockdown of hTDP1 or hTDP2 in HEK293 cells also exacerbate DNA damage mediated by TOP2…………………………………………………………25
- Ectopic expression of hTDP1 or hTDP2 alleviated DNA damages mediated by TOP2…………………………………………………………………………………25
- Re-introduction of hTDP1/2 into hTDP1/2-deficient HEK293 cells decrease the TOP2-mediated DNA damages………………………………………………………26
- The formation and degradation of TOP2cc was not affected by the level of hTDP1 and hTDP2 in HCT116 and HEK293 cells…………………………………………..26
- hTDP1 and hTDP2 may participate both in TIP and RIP pathway………………27
- The degradation rate of TOP2α is slower in HEK293 cells deficient in Bmi1 (TOP2α specific proteasome E3 ligase)………………………………………………………28
- hTDP1 and hTDP2 must worked downstream of TOP2α degraded by UB/26S proteasome…………………………………………………………………………..29
- PARP-1 plays a minimal role in the repair of TOP2cc-mediated DNA damage…31
DISCUSSION……………………………………………………………………….32
REFERENCES……………………………………………………………………36
FIGURES AND APPENDIX……………………………………………………….47
- Figure 1. Transient knockdown or overexpression of hTDP1 or hTDP2 in HCT116 cells…………………………………………………………………………………….48
- Figure 2. HCT116 cells deficient in hTDP1 or hTDP2 are more sensitive to the TOP2-mediated cytotoxicity……………………………………………………………49
- Figure 3. DNA damage induced by TOP-targeting drugs are increased in HCT116 cells deficient in hTDP1 or hTDP2…………………………………………………….50
- Figure 4. The γH2AX activation levels induced by TOP2-targeting drugs were increased in HCT116 cells deficient in hTDP1 or hTDP2……………………………51
- Figure 5. Transient knockdown or overexpression of hTDP1 or hTDP2 in HEK293 cells…………………………………………………………………………………52
- Figure 6. The extents of chromosomal DNA break induced by TOP2-targeting drugs are increased in HEK293 cells deficient in hTDP1 or hTDP2…………………………53
- Figure 7. The γH2AX activation induced by TOP2-targeting drugs are increased in HEK293 cells deficient in hTDP1 or hTDP2…………………………………………54
- Figure 8. hTDP1 plays a role in processing of TOP1cc and TOP2cc in HCT116 cells……………………………………………………………………………………..55
- Figure 9. hTDP1 plays a role in processing of TOP1cc and TOP2cc in HEK293 cells……………………………………………………………………………………56
- Figure 10. The levels of γH2AX activation induced by Topoisomerase-targeting drugs are increased in HCT116 or HEK293 cells overexpressing hTDP1 or hTDP2………57
- Figure 11. Re-introduction of hTDP1/2 in hTDP1/2-deficient HEK293 cells reduce the levels of DNA breakage upon TOP2-targeting drug treatment………………………59
- Figure 12. The VP-16-induced TOP2cc formation and degradation were not affected in HCT116 cells with reduced expression of hTDP1 or hTDP2……………………….60
- Figure 13. The VP-16-induced TOP2cc formation and degradation were not affected in HEK293 cells with reduced expression of hTDP1 or hTDP2…………………….…61
- Figure 14. TOP2cc formation and degradation induced by VP-16 were not affected in HCT116 cells overexpressing hTDP1 or hTDP2…………………………………….62
- Figure 15. TOP2cc formation and degradation induced by VP-16 were not affected in HEK293 cells overexpressing hTDP1 or hTDP2………………………………………63
- Figure 16. Phosphorylations of Chk2 and p53 were increased upon VP-16 treatment in hTDP1 or hTDP2 knowck down HCT116 cells……………………………………….65
- Figure 17. The Phosphorylation level of Chk2 and p53 upon VP-16 treatment in hTDP1 or hTDP2 knowck down HCT116 are faster………………………………….66
- Figure 18. The degradation rate of TOP2α is slower in HEK293 cells deficient in Bmi1 (E3 ligase)………………………………………………………………………68
- Figure 19. hTDP1 and Bmi1 appear to function in the same pathway fot TOP2cc but not for TOP1cc………………………………………………………………………..69
- Figure 20. hTDP2 and Bmi1 appear to function in the same pathway fot TOP2cc but not for TOP1cc…………………………………………………………………………71
- Figure 21. hTDP1, hTDP2 and Bmi1 work in the same processing pathway of TOP2cc…………………………………………………………………………………72
- Figure 22. PARP is involeved in the repair of TOP1cc but not TOP2cc-mediated DNA damage…………………………………………………………………………73
- Figure 23. A scheme illustrating the processing of TOP2cc………………………….74
- Appendix 1. Alkaline single cell gel electrophoresis (Comet) assay…………………75
- Appendix 2. In Vivo Complexes of Enzyme (ICE) Bioassay………………………..76
dc.language.isoen
dc.title探討人類酪胺酸DNA磷脂酶在拓樸異構酶可切性複合體之處理路徑上所扮演的角色zh_TW
dc.titleRoles of Human Tyrosyl-DNA Phosphodiesterases in Processing Topoisomerase Cleavable Complexesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄(Shu-Chun Teng),楊宏志(Hung-Chih Yang)
dc.subject.keyword拓樸異構&#37238,拓樸異構&#37238,可切性複合體,人類酪胺酸DNA磷脂&#37238,細胞處理路徑,DNA損傷反應,轉錄起始的處理,DNA複製起始的處理,zh_TW
dc.subject.keywordtopoisomerase,topoisomerase cleavable complex,DNA Phosphodiesterase,cellular processing pathway,DNA damage response,transcription- and replication-initiated processing pathways,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2012-06-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved