Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65975Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 孫?光(Chi-Kuang Sun) | |
| dc.contributor.author | Yuan-Fu Tsai | en |
| dc.contributor.author | 蔡沅甫 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:17:19Z | - |
| dc.date.available | 2020-12-31 | |
| dc.date.copyright | 2012-07-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-29 | |
| dc.identifier.citation | [1] D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, 'Recent advances in terahertz imaging,' Applied Physics B: Lasers and Optics, vol. 68, pp. 1085-1094, 1999.
[2] A. G. Davies, E. H. Linfield, and M. B. Johnston, 'The development of terahertz sources and their applications,' Physics in Medicine and Biology, vol. 47, p. 3679, 2002. [3] D. Dragoman and M. Dragoman, 'Terahertz fields and applications,' Progress in Quantum Electronics, vol. 28, pp. 1-66, 2004. [4] A. Redo-Sanchez and Z. Xi-Cheng, 'Terahertz science and technology trends,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 14, pp. 260-269, 2008. [5] K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, 'Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,' Opt. Express, vol. 11, pp. 2549-2554, 2003. [6] M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, 'Detection and identification of illicit drugs using terahertz imaging,' Journal of Applied Physics, vol. 100, pp. 103104-5, 2006. [7] S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, 'The interaction between Terahertz radiation and biological tissue,' Physics in Medicine and Biology, vol. 46, p. R101, 2001. [8] P. H. Siegel, 'Terahertz technology in biology and medicine,' Microwave Theory and Techniques, IEEE Transactions on, vol. 52, pp. 2438-2447, 2004. [9] K. Humphreys, J. P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A. Murphy, and C. O'Sullivan, 'Medical applications of terahertz imaging: A review of current technology and potential applications in biomedical engineering,' 2004, pp. 1302-1305. [10] E. Pickwell and V. P. Wallace, 'Biomedical applications of terahertz technology,' Journal of Physics D: Applied Physics, vol. 39, p. R301, 2006. [11] B. B. Hu and M. C. Nuss, 'Imaging with terahertz waves,' Opt. Lett., vol. 20, pp. 1716-1718, 1995. [12] D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, 'T-ray imaging,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 2, pp. 679-692, 1996. [13] D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, 'Three-dimensional terahertz pulse imaging of dental tissue,' Journal of Biomedical Optics, vol. 8, pp. 303-307, 2003. [14] M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, 'Terahertz time-domain spectroscopy of biological tissues,' Quantum Electronics, vol. 38, pp. 647-654, 2008. [15] P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, 'Terahertz time-domain spectroscopy of glucose and uric acid,' Journal of Biological Physics, vol. 29, pp. 117-121, 2003. [16] K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, 'Cooperativity in ion hydration,' Science, vol. 328, pp. 1006-1009, May 21, 2010 2010. [17] M. Heyden, E. Brundermann, U. Heugen, G. Niehues, D. M. Leitner, and M. Havenith, 'Long-range influence of carbohydrates on the solvation dynamics of water: Answers from terahertz absorption measurements and molecular modeling simulations,' Journal of the American Chemical Society, vol. 130, pp. 5773-5779, 2008/04/01 2008. [18] T. Suzuki, K. Takayama, S. Yamauchi, Y. Imai, and M. Tonouchi, 'Measurement of water absorption coefficient using terahertz time-domain spectroscopy,' in Infrared, Millimeter, and Terahertz Waves, 2009. IRMMW-THz 2009. 34th International Conference on, 2009, pp. 1-2. [19] S.-L. Wu, 'Burn-depth detection of porcine skin and spectroscopy of hemoglobin with T-ray technology,' Master, Department of Photonics, National Chiao Tung University, 2005. [20] J. Kiyoung, H. Yong-Min, K. Sang-Hoon, P. Yeonji, S. Joo-Hiuk, O. Seung Jae, and S. Jin-Suck, 'Characterization of blood cells by using terahertz waves,' in Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on, 2011, pp. 1-2. [21] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-j. Huang, H.-c. Chang, and C.-K. Sun, 'Low-index terahertz pipe waveguides,' Opt. Lett., vol. 34, pp. 3457-3459, 2009. [22] C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-c. Chang, 'Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,' Opt. Express, vol. 18, pp. 309-322, 2010. [23] M. Tonouchi, 'Cutting-edge terahertz technology,' Nat Photon, vol. 1, pp. 97-105, 2007. [24] X. C. Zhang, 'Terahertz wave imaging: horizons and hurdles,' Physics in Medicine and Biology, vol. 47, p. 3667, 2002. [25] S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, 'T-ray imaging and tomography,' Journal of Biological Physics, vol. 29, pp. 247-256, 2003. [26] J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, 'Terahertz microchip for illicit drug detection,' Photonics Technology Letters, IEEE, vol. 18, pp. 2254-2256, 2006. [27] S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, 'Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030,' Diabetes Care, vol. 27, pp. 1047-1053, 2004. [28] 'Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia,' World Health Organization2006. [29] S. K. Vashist, 'Non-invasive glucose monitoring technology in diabetes management: A review,' Analytica Chimica Acta, 2012. [30] D. Suhandy, T. Suzuki, Y. Ogawa, N. Kondo, T. Ishihara, and Y. Takemoto, 'A quantitative study for determination of sugar concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy,' Orlando, Florida, USA, 2011, pp. 802705-6. [31] G. P. Gallerano, 'Terahertz radiation in biological research, investigations on diagnostics and study on potential genotoxic effects,' 2004. [32] S. P. Mickan and X. C. Zhang, 'T-ray sensing and imaging,' International Journal of High Speed Electronics and Systems, vol. 13, pp. 601-676, 2003. [33] (2012). Electromagnetic spectrum diagram (100GHz to 10THz). Available: www.sp.phy.cam.ac.uk/SPWeb/research/thzcamera/WhatIsTHzImaging.htm [34] D. H. Auston and K. P. Cheung, 'Coherent time-domain far-infrared spectroscopy,' J. Opt. Soc. Am. B, vol. 2, pp. 606-612, 1985. [35] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, 'Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,' Applied Physics Letters, vol. 73, pp. 444-446, 1998. [36] Q. Wu and X. C. Zhang, 'Free-space electro-optic sampling of terahertz beam,' Applied Physics Letters, vol. 67, pp. 3523-3525, 1995. [37] Z. G. Lu, P. Campbell, and X. C. Zhang, 'Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,' Applied Physics Letters, vol. 71, pp. 593-595, 1997. [38] Y.-S. Lee, Principles of Terahertz Science and Technology, 1 ed.: Springer, 2008. [39] R. W. Boyd, Nonlinear Optics: Academic Press, 2008. [40] P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, 'Study of terahertz radiation from InAs and InSb,' Journal of Applied Physics, vol. 91, pp. 5533-5537, 2002. [41] H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, 'Terahertz Radiation Mechanism from Femtosecond-Laser-Irradiated InAs (100) Surface,' Japanese Journal of Applied Physics, vol. 42, 2003. [42] T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhang, 'Terahertz time-domain spectroscopy of atmosphere with different humidity,' Orlando, FL, USA, 2003, pp. 28-37. [43] S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, 'Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,' Journal of Applied Physics, vol. 90, pp. 837-842, 2001. [44] B. Mafuvadze and K. H. Erlwanger, 'The effect of EDTA, heparin and storage on the erythrocyte osmotic fragility, plasma osmolality and haematocrit of adult ostriches (Struthio camelus),' Veterinarski Arhiv, vol. 77, pp. 427-434, 2007. [45] H. A. Haus, Waves and Fields in Optoelectronics: Prentice Hall, 1984. [46] S. M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 3 ed.: Academic Press, 2004. [47] J. Cohen, Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences: L. Erlbaum Associates, 2003. [48] B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics: Pearson Education, Limited, 2012. [49] J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, 'Terahertz scanning imaging with a subwavelength plastic fiber,' Applied Physics Letters, vol. 92, pp. 084102-3, 2008. [50] C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, 'All-terahertz fiber-scanning near-field microscopy,' Opt. Lett., vol. 34, pp. 1084-1086, 2009. [51] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, 'Low-loss subwavelength plastic fiber for terahertz waveguiding,' Opt. Lett., vol. 31, pp. 308-310, 2006. [52] H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, 'Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,' Opt. Express, vol. 19, pp. 19523-19531, 2011. [53] J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, and C.-K. Sun, 'Bending loss of terahertz pipe waveguides,' Opt. Express, vol. 18, pp. 26332-26338, 2010. [54] E. Nguema, D. Ferachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, 'Broadband terahertz transmission within the air channel of thin-wall pipe,' Opt. Lett., vol. 36, pp. 1782-1784, 2011. [55] J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, I. J. Chen, Y.-J. Hwang, H.-c. Chang, and C.-K. Sun, 'Terahertz polarization-sensitive rectangular pipe waveguides,' Opt. Express, vol. 19, pp. 21532-21539, 2011. [56] C. A. St. Jean, W. L. Bishop, Jr., B. K. Sarpong, S. M. Marazita, and T. W. Crowe, 'Novel fabrication of Ti-Pt-Au/GaAs Schottky diodes,' Electron Devices, IEEE Transactions on, vol. 47, pp. 1465-1468, 2000. [57] J. L. Hesler and T. W. Crowe, 'NEP and responsivity of THz zero-bias Schottky diode detectors,' in Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference on, 2007, pp. 844-845. [58] H. Eisele, A. Rydberg, and G. I. Haddad, 'Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,' Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 626-631, 2000. [59] J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, 'A Continuously Tunable 65--15-GHz Gunn Oscillator,' Microwave Theory and Techniques, IEEE Transactions on, vol. 33, pp. 610-619, 1985. [60] C.-M. Chiu, 'THz Fiber-Scanning Near-Field Microscopy,' Master, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2009. [61] Y.-C. Hsueh, 'THz Anti-resonant Reflecting Pipe Waveguide,' Master, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2009. [62] T. Ito, M. Tanimoto, K. Yamada, S. Kaneko, M. Matsumoto, K. Obayashi, S. Hagiwara, M. Murakoshi, T. Aoki, M. Wakabayashi, T. Gohda, K. Funabiki, K. Maeda, S. Horikoshi, and Y. Tomino, 'Glomerular changes in the KK-Ay/Ta mouse: A possible model for human type 2 diabetic nephropathy,' Nephrology, vol. 11, pp. 29-35, 2006. [63] CLEA Japan, Inc. Available: http://www.clea-japan.com/ [64] J. C. Lin, 'A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation,' IEEE Antennas and Propagation Magazine, vol. 48, pp. 157-159, 2006. [65] H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, 'Near infrared spectroscopy,' British Journal of Anaesthesia, vol. 82, pp. 418-426, March 1, 1999 1999. [66] M. Ferrari, L. Mottola, and V. Quaresima, 'Principles, Techniques, and Limitations of Near Infrared Spectroscopy,' Canadian Journal of Applied Physiology, vol. 29, pp. 463-487, 2004/08/01 2004. [67] D. I. W. Phillips, P. M. Clark, C. N. Hales, and C. Osmond, 'Understanding Oral Glucose Tolerance: Comparison of Glucose or Insulin Measurements During the Oral Glucose Tolerance Test with Specific Measurements of Insulin Resistance and Insulin Secretion,' Diabetic Medicine, vol. 11, pp. 286-292, 1994. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65975 | - |
| dc.description.abstract | 糖尿病是一種慢性代謝性疾病,隨著社會文明的進步,其盛行率與發生率有愈來愈高的趨勢,因此被世界衛生組織(WHO)宣布為全球性的流行疾病。2004年,根據世界衛生組織報告:2000年時的糖尿病患者人數為1.71億人口,估計到2030年時,糖尿病患者人數將倍增至3.66億人口。
對於糖尿病患者來說,經常性的血糖監測是控制糖尿病的每日所需,以維持血糖值在生理範圍內。目前被廣泛採用的電化學血糖機的使用方式為〝指尖採血法〞,採血使用32號的針頭從指尖取得一滴血,並使用血糖機的血糖試片量測血糖值。檢測過程不僅會造成感染的風險,也帶給糖尿病人疼痛感,且血糖試片為昂貴的耗材(∼1美元/片)。因此,發展非侵入式血糖監測法為必要之技術,以減緩病人每日血糖監測所帶來的疼痛感與感染風險。 在這篇論文中,我們利用兆赫波時域光譜(THz-TDS)量測體外全血的吸收常數。藉由統計分析方法,我們從複雜血液成分之中找到與兆赫波吸收常數最具相關性的血液成分。我們發現血糖為最相關的血液成分(r = 0.865, p < 0.001, R2 = 0.748, N = 47, f = 340 GHz)。 除此之外,根據體外全血分析的結果,我們設計了一套兆赫波量測系統,以測量活體糖尿病鼠耳朵微血管的兆赫波吸收常數。其結果與體外全血一致:高血糖血液在兆赫波段擁有較高的兆赫波吸收常數。 我們相信這些量測結果,對於未來發展快速且準確之非侵入式兆赫波血糖量測技術極具幫助。 | zh_TW |
| dc.description.abstract | Diabetes is a serious health concern and has been declared as a global epidemic by the World Health Organization (WHO) due to its rapidly increasing incidence. In 2004, WHO estimated that the number of diabetics would increase from 171 million in 2000 to 366 million by 2030.
Nowadays, frequent blood glucose monitoring is crucial in diabetic management to maintain the blood glucose level within the physiological range. The extensively employed electrochemical glucose meters are “finger-stick methods” that use a 32-gauge lancet to draw blood from the fingertip. This process is not only painful but also poses a risk for infection. The strips are also often expensive (~1 USD for each). Therefore, non-invasive glucose monitoring (NGM) techniques must be developed to make glucose monitoring pain free for diabetics. In this thesis, ex vivo whole blood was investigated by terahertz (THz) time domain spectroscopy. Using statistical analysis methods, we obtain the closest relationship between blood components and THz wave attenuation. Blood glucose was determined as the most relevant component (r = 0.865, p < 0.001, R2 = 0.748, N = 47, f = 340 GHz). Moreover, based on the results of the whole blood analysis, we also measured in vivo THz wave attenuation in mice capillary. The results were consistent with those of previous studies, i.e., a high amount of glucose results in high THz wave attenuation in the THz region. The finding on blood glucose attenuation is expected to be useful for THz NGM applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:17:19Z (GMT). No. of bitstreams: 1 ntu-101-R99941040-1.pdf: 20249256 bytes, checksum: 29b04812ad6889008e62f9536e289e0f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 IV ABSTRACT V CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XIV Chapter 1 Introduction 1 1.1 Introduction of Terahertz Technology 3 1.2 Non-Invasive Glucose Measurement Review 4 1.3 An Overview of the Thesis 6 Chapter 2 Ex Vivo Whole Blood Measurement by Terahertz Time-Domain Spectroscopy 7 2.1 Introduction to Terahertz Time Domain Spectroscopy 8 2.1.1 Free-Space Electro-Optic Sampling 10 2.1.2 Experimental Setup 14 2.1.3 Experimental Situation Control and Selection 18 2.1.3.1 THz-TDS System Monitoring 18 2.1.3.2 THz Bandwidth Selection 19 2.1.4 Retrieval of Optical Constants from Data Obtained by THz-TDS 21 2.2 Whole Blood Measurement 24 2.2.1 Sample Preparation 24 2.2.2 Measurement Setup of Whole Blood 26 2.2.3 Glucose Meter Calibration 28 2.3 Experimental Results and Discussion 30 2.3.1 Analysis Data Selection 30 2.3.2 Brief Introduction to Statistical Method 31 2.3.2.1 p-value 31 2.3.2.2 Correlation Coefficient 32 2.3.3 Statistical Analysis 33 Chapter 3 In Vivo Diagnosis of Glucose Level in Diabetic Mice by THz Pipe-Based Microscopy 41 3.1 Construction of the THz Pipe-Based Microscopy System 42 3.1.1 Former System - THz Near-Field Microscopy 42 3.1.2 Resolution Improvement in THz Region 43 3.1.3 Experimental Setup 47 3.1.4 Comparison the Resolution Improvement Method 48 3.2 Measurement of Glucose Level in Mouse Model 49 3.2.1 Animal Model 49 3.2.2 In Vivo Measurement in Mouse Ear 50 3.3 Experimental Results and Discussion 54 Chapter 4 Summary 59 Chapter 5 Future Work 61 Reference 62 Appendix A Publication List A1 Appendix B Experiment Approval A5 Appendix C Non-Invasive Glucose Monitoring Devices A7 Appendix D Copyright Permissions of Figures A9 | |
| dc.language.iso | en | |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 吸收常數 | zh_TW |
| dc.subject | 兆赫波 | zh_TW |
| dc.subject | 血糖 | zh_TW |
| dc.subject | 非侵入式 | zh_TW |
| dc.subject | Attenuation Constant | en |
| dc.subject | Terahertz | en |
| dc.subject | Non-invasive | en |
| dc.subject | Diabetes | en |
| dc.subject | Glucose | en |
| dc.title | 兆赫波非侵入式血糖量測研究 | zh_TW |
| dc.title | Non-invasive Terahertz Blood Glucose Measurement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王宗道(Tzung-Dau Wang),黃義侑(Yi-You Huang),林致廷(Chih-Ting Lin) | |
| dc.subject.keyword | 兆赫波,非侵入式,糖尿病,血糖,吸收常數, | zh_TW |
| dc.subject.keyword | Terahertz,Non-invasive,Diabetes,Glucose,Attenuation Constant, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 19.77 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
