Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65967
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊晴光
dc.contributor.authorLung-Yu Houen
dc.contributor.author侯龍雨zh_TW
dc.date.accessioned2021-06-17T00:17:00Z-
dc.date.available2013-07-16
dc.date.copyright2012-07-16
dc.date.issued2012
dc.date.submitted2012-07-02
dc.identifier.citation[1] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Network, and Coupling Structure. Norwood, MA: Artech House, 1980.
[2] J. D. Rhodes, “Waveguide bandstop elliptic filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-20, no. 11, pp. 715-718, Nov. 1972.
[3] J. D. Rhodes and R. J. Cameron, “General extracted pole synthesis technique with application to low-loss TE011–mode filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 9, pp. 1018-1028, Sep. 1980.
[4] S. Amari and U. Rosenberg, “Direct synthesis of a new class of bandstop filters,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 607-616, Feb. 2004.
[5] R. Wu, S. Amari, and U. Rosenberg, “New cross-coupled microstrip band reject filters,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1597-1600, Jun. 2004.
[6] S. Amari and U. Rosenberg, “New building blocks for modular design of elliptic and self-equalized microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 721-736, Feb. 2004.
[7] S. Amari and U. Rosenberg, “Synthesis and design of novel in-line filters with one or two real transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1464-1478, May. 2004.
[8] G. Macchiarella, “Synthesis of an in-line prototype filter with two transmission zeros without cross-couplings,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 19-21, Jan. 2004.
[9] R. Wu, S. Amari and U. Rosenberg, “Cross-coupled microstrip band reject filters with non-resonating nodes,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 585-587, Sep. 2005.
[10] S. Amari, U. Rosenberg, R. Wu, “In-line pseudoelliptic band-reject filters with nonresonating nodes and/or phase shifts,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 428-436, Jan. 2006.
[11] J. Macedo, M. A. Copeland, and P. Schvan, “A 2.5GHZ silicon image reject filter,” in Proc IEEE Custom Integrated Circuits Conf., May 1996, pp. 10.3.1-10.3.4.
[12] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS wireless LNA receiver front end,” IEEE J. Solid-State Circuit, vol. 35, pp. 765-772, May 2000.
[13] T. K. Nguyen, S. K. Han, and S. G. Lee, “Ultra-low-power 2.4 GHz image rejection low-noise amplifier,” Electron. Lett., vol. 41, no. 15, pp. 842-843, Jul. 2005.
[14] T. K. Nguyen, N. J. Oh, C. Y. Cha, Y. H. Oh, G. J. Ihm, and S. G. Lee, “Image rejection CMOS low noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 538-547, Feb. 2005.
[15] A. Vallese, A. Bevilacqua, C. Sandner, M. Tiebout, A. Gerosa, and A. Neviani, “Analysis and design of an integrated notch filter for the rejection of interference in UWB systems,” IEEE J. Solid-State Circuit, vol. 44, no. 2, pp. 331-343, Feb. 2009.
[16] Y. L. Tsou, H. Y. Shih, C. N. Kuo, and C. H. Chang, “Differential LC ladder LNA with proposed third-order active notch filter for UWB band group1,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sep. 2009, pp. 511-515.
[17] C. C. Chen, and C. K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[18] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2512-2520, Dec. 2007.
[19] M. L. Lee, H. S. Wu, and C. K. C. Tzuang, “1.58 GHz third-order CMOS active bandpass filter with improved passband flatness,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 9, pp. 2275-2284, Sep. 2011.
[20] C. K. C. Tzuang et al., “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4548-4555, Dec. 2006.
[21] K. K. Huang, M. J. Chiang, and C. K. C. Tzuang, “A 3.3 mW K-band 0.18-um 1P6M CMOS active bandpass filter using complementary current-reuse pair,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 94-96, Feb. 2008.
[22] Y. Gao, Y. J. Zheng, and B. L. Ooi, “0.18 μm CMOS dual-band UWB LNA with interference rejection,” Electron. Lett., vol. 43, no. 20, pp. 1096-1098, Sep. 2007.
[23] B. Park, S. Choi, and S. Hong, “A low-noise amplifier with tunable interference rejection for 3.1-to 10.6-GHz UWB systems,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 40-42, Jan. 2010.
[24] B. M. Schiffman and G. L. Matthaei, “Exact design of band-stop microwave filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-12, no.1, pp. 6–15, Jan. 1964.
[25] R. J. Wenzel, “Exact design of TEM microwave networks using quarter-wave lines,” IEEE Trans. Microw. Theory Tech., vol. MTT-12, no. 1, pp. 94–111, Jan. 1964.
[26] H. C. Bell, “L-resonator bandstop filters,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2669–2672, Dec. 1996.
[27] R. V. Snyder and S. Shin, “Parallel coupled line notch filter with wide spurious-free passbands,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, Paper TU4A-3, CD ROM.
[28] W. Tang, J. S. Hong and Y. H. Chun, 'Microstrip Cross-Coupled Stepped-Impedance Line Bandstop Filter,' IEEE MTT-S Int. Microw. Symp. Dig, Jun. 2009, pp. 645-648.
[29] W. M. Fathelbab and M. B. Steer, “Design of band-reject filters utilising circuit prototypes,” IET Microw., Antennas, Propag., vol. 1, pp. 523–526, Apr. 2007.
[30] C. Nguyen, C. Hsieh, and D. W. Ball, “Millimeter wave printed circuit spurline filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1983, pp. 98–100.
[31] C. Nguyen and K. Chang, “Analysis and design of spurline bandstop filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1985, pp. 445–448.
[32] C. Nguyen and K. Chang, “On the analysis and design of spurline bandreject filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 12, pp. 1416–1421, Dec. 1985.
[33] W. H. Tu, K. Chang, “Compact microstrip bandstop filter using open stub and spurline,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 268-270, Apr. 2005.
[34] A Gorur, C. Karpuz, E. Gunturkun, M. Urlan, A. K. Gorur, “Design of microstrip bandstop filter with Adjustable Wide Passband Using Folded Open-Circuited Stub Resonators,” in Proc. Asia-Pacific Microw. Conf., 2009, pp. 894-897.
[35] R. Levy, R. V. Snyder, and S. Shin, “Bandstop filters with extended upper passbands,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 2503–2515, Dec. 2006.
[36] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2075-2084, Nov. 1999.
[37] J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, “Equivalent-circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1451–61, Apr. 2005.
[38] J. Garcia-Garcia et al. “Microwave filters with improved stopband based on sub-wavelength resonators,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1997-2006, Jun. 2005.
[39] J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, and M. Sorolla, “Comparison of electromagnetic bandgap and split rings resonator microstrip lines as stopband structures,” Microw. Opt. Technol. Lett., vol. 44, pp. 376–379, Feb. 2005.
[40] A. Gorur, C. Karpuz, K. Yalcin, and H. Gorur, “Bandstop filter with a wider upper passband using microstrip open loop resonator,” in Proc. Asia-Pacific Microw. Conf., 2001, vol. 2, pp. 527–530.
[41] A. Boutejdar, A. Batmanov, A. Elsherbini, E. Burte and A. Omar, “A New Method to Improve the Rejectband of a 5.6 GHz Bandstop Filter Using λ/2 Open-Loop Ring Microstrip Resonators” in Proc. Asia-Pacific Microw. Conf., Dec. 2008, pp. 1-4.
[42] B. Jitha, P. C. Bybi, C. K. Aanandan, P. Mohanan, 'Microstrip Band Rejection Filter using Open Loop Resonator,' Microw. Opt. Technol. Lett., Vol. 50, no 6, June 2008.
[43] R. Wu, S. Amari, U. Rosenberg, “New cross-coupled microstrip band reject filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1597–1600.
[44] I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol. 8, no. 12, Jun. 1972, pp. 302-303.
[45] J. S. Hong, and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microw. and Guided Wave Lett., vol. 5, no. 11, Nov. 1995, pp. 371-372.
[46] J. A. Curitis, and S. J. Fiedziuszko, “Miniature dual mode microstrip filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 1991, pp. 443-446.
[47] R. R. Mansour, “Design of superconductive multiplexers using single-mode and dual-mode filters,” IEEE Trans. Microw. Theory Tech., vol. 42, pp. 1411-1418, Jun. 1994.
[48] S. Saxena, S. Porwal, K. Soni, P. Chhawchharia, and S. K. Koul, “Analysis and design of bandstop filter using E-shaped dual mode resonator,” in Microw. Commun., Antennas Electron. Syst., Tel Aviv, Israel, 2009, pp. 1-6.
[49] G. M. Eryilmaz, E. Gunturkun, A. Gorur, and C. Karpuz, “Dual-mode microstrip bandstop filters,” in Proc. Asia-Pacific Microw. Conf., Dec. 2008, pp. 1-4.
[50] J. S. Hong, “Microstrip dual-mode nand reject filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 945–948.
[51] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” New York, NY, John Wiley & Sons, 2001.
[52] M. J. Chiang, H. S. Wu, C. K. C. Tzuang, “Artificial-synthesized edge-coupled transmission lines for compact CMOS directional coupler designs,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3410-3417, Dec. 2009.
[53] S. Wang, K. H. Tasi, K. K. Huang, S. X. Li, H. S. Wu, and C. K. C. Tzuang, “Design of X-band RF CMOS transceiver for FMCW monopulse radar,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 61-70, Jan. 2009.
[54] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 483-490, Aug. 1992.
[55] G. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters, Impedance-matching Networks, and Coupling Structures”, Dedham, MA, Artech House, 1980.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65967-
dc.description.abstract本篇論文提出了一個實現在互補金氧半導體(CMOS) 0.13微米製程上的傳輸線主動帶止濾波器設計技術。首先討論了三階主動濾波器的設計方法,而後提出了一個雙模主動濾波器。
在第一個部分提出的三階濾波器由三個單極點的單元所構成,而此單極點單元包含了一個開路共振器以及一個交叉耦合差動對。交叉耦合差動動在此用來提升共振器的品質因子以及有效的減少所需的面積。而在此設計中,使用了一種近橫向電磁互補式金屬合成傳輸線來設計濾波器。本文也介紹了此三階濾波器的設計流程。第二個部分則提出了一個由E型共振器組成的主動雙模帶止濾波器。利用雙模共振器的特性,我們可以減少設計濾波器所需的共振器數目,而達到有效縮減電路面積的目的。
兩個提出的電路都操作在10 GHz (X頻帶)。三階濾波器的面積為570 × 660微米平方,而雙模濾波器則為510 × 570微米平方。模擬與量測的結果具有高一致性並驗證了所提出的濾波器設計概念。
zh_TW
dc.description.abstractThis dissertation presents the design of transmission-line-based (TL-based) active bandstop filter fabricated in standard 0.13-μm complementary metal-oxide -semiconductor (CMOS) technology. Firstly, the design methods of a third-order active filter are discussed, and following, a dual-mode active filter is proposed.
The third-order active bandstop filter in the first part is synthesized with three single pole rejection elements, which consists of an open-loop resonator and a CMOS cross-coupled pair. The cross-coupled pair is as an active compensation circuit, which both enhances the quality factor of resonator and reduces the resonator size significantly. Synthetic quasi-TEM complementary-conductive-strip transmission-lines (CCS TLs) are used for resonator implementation. A third-order filter design procedure is proposed, which is based on the low-pass prototype filter design. The second part proposes a dual-mode active filter, comprising an E-shaped dual-mode resonator. Utilizing the properties of dual-mode resonator, which can reduce the number of required resonators for a given degree of filter, a compact filter configuration is obtained.
Each of the filters operated on 10 GHz (X-band), and the size of the multi-pole filter is 570 × 660 μm2 while the dual-mode one is 510 × 570 μm2. The properties of the proposed filters will be verified by the simulation and measurement results.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:17:00Z (GMT). No. of bitstreams: 1
ntu-101-R99942025-1.pdf: 3571139 bytes, checksum: 510b85e58ff3d894c4c7070549b9788a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 4
1.2.1 Review of Active Notch Filters 4
1.2.2 Review of Mircrostrip Bandstop Filters 6
1.3 Organization 8
Chapter 2 Design of Third-Order Active Bandstop Filter 9
2.1 Active Single Pole Reject Element 9
2.1.1 Passive Frequency Selective Structure 9
2.1.2 Active Compensation Circuits 12
2.2 Third Order Filter Design 13
2.3 Implementation 23
2.3.1 Complementary Conducting Strip Transmission Line (CCS TL) 23
2.3.2 Multi-Trace CCS TL 25
2.3.3 Fabrication 26
2.4 Measurement Result 34
Chapter 3 Dual-Mode Active Bandstop Filter Design 38
3.1 Approach of Double Mode Active Filter 38
3.1.1 Double Resonance Structure 38
3.1.2 Schematic of Proposed Active Bandstop Filter 44
3.2 Implementation 48
3.3 Measurement Result 50
Chapter 4 Conclusion 54
REFERENCE 55
dc.language.isozh-TW
dc.subject主動濾波器zh_TW
dc.subject互補金氧半導體zh_TW
dc.subjectCMOSen
dc.subjectactive filteren
dc.title互補金氧半導體合成傳輸線X頻帶主動帶止濾波器設計zh_TW
dc.titleDesign of CMOS Synthetic Transmission-Line-Based X-Band Active Bandstop Filteren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許博文,吳瑞北,陳毓喬
dc.subject.keyword互補金氧半導體,主動濾波器,zh_TW
dc.subject.keywordCMOS,active filter,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-07-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved