請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65952完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫維仁,蔡瑞章 | |
| dc.contributor.author | Yu-Chang Yeh | en |
| dc.contributor.author | 葉育彰 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:16:25Z | - |
| dc.date.available | 2012-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-02 | |
| dc.identifier.citation | Abdelmalak, B., N. Marcanthony, et al. Dexmedetomidine for anesthetic management of anterior mediastinal mass. Journal of Anesthesia 2010;24(4):607-10.
Adib-Conquy, M. and J. M. Cavaillon. Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009;101(1):36-47. Agabiti-Rosei, E. From macro- to microcirculation: benefits in hypertension and diabetes. J Hypertens Suppl 2008;26(3):S15-9. Aird, W. C. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003;101(10):3765-77. Ait-Oufella, H., E. Maury, et al. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med 2010;36(8):1286-98. Altaweel, L., D. Sweeney, et al. Growing insights into the potential benefits and risks of activated protein C administration in sepsis: a review of preclinical and clinical studies. Biologics 2009;3:391-406. Andersson, A., J. Fenhammar, et al. Endothelin-mediated gut microcirculatory dysfunction during porcine endotoxaemia. Br J Anaesth 2010;105(5):640-7. Andersson, U., H. Wang, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000;192(4):565-70. Annane, D., V. Sebille, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002;288(7):862-71. Anup, R. and K. A. Balasubramanian. Surgical stress and the gastrointestinal tract. J Surg Res 2000;92(2):291-300. Arcangeli, A., C. D'Alo, et al. Dexmedetomidine use in general anaesthesia. Curr Drug Targets 2009;10(8):687-95. Armitage, G. A., K. G. Todd, et al. Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke. J Cereb Blood Flow Metab 2010;30(8):1432-6. Arsalani-Zadeh, R., S. Ullah, et al. Oxidative stress in laparoscopic versus open abdominal surgery: a systematic review. J Surg Res 2011;169(1):e59-68. Assadi, A., O. Desebbe, et al. Effects of sodium nitroprusside on splanchnic microcirculation in a resuscitated porcine model of septic shock. Br J Anaesth 2008;100(1):55-65. Assaly, R. A., R. H. Habib, et al. Use of multiple fluorophores for evaluating microvascular permeability in control rats and rats with sepsis. Clin Sci (Lond) 2008;114(2):123-30. Bamgbade, O. A. and J. A. Alfa. Dexmedetomidine anaesthesia for patients with obstructive sleep apnoea undergoing bariatric surgery. Eur J Anaesthesiol 2009;26(2):176-7. Bateman, R. M., M. D. Sharpe, et al. Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide. Critical Care 2003;7(5):359-73. Bateman, R. M. and K. R. Walley. Microvascular resuscitation as a therapeutic goal in severe sepsis. Critical Care 2005;9 Suppl 4:S27-32. Bauer, A., S. Kofler, et al. Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging. Anesthesiology 2007;107(6):939-45. Bauer, P. R. Microvascular responses to sepsis: clinical significance. Pathophysiology 2002;8(3):141-48. Baumgart, K., P. Radermacher, et al. Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogen sulfide. Curr Opin Anaesthesiol 2009;22(2):168-76. Baumgarten, G., P. Knuefermann, et al. Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 2006;25(1):43-9. Bekker, A., M. Sturaitis, et al. The effect of dexmedetomidine on perioperative hemodynamics in patients undergoing craniotomy. Anesth Analg 2008;107(4):1340-7. Bellomo, R., M. Chapman, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 2000;356(9248):2139-43. Bendjelid, K. and J. A. Romand. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 2003;29(3):352-60. Bernard, G. R., J. L. Vincent, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001;344(10):699-709. Bevan, J. A., J. Duckworth, et al. Sympathetic control of cerebral arteries: specialization in receptor type, reserve, affinity, and distribution. FASEB J 1987;1(3):193-8. Bhana, N., K. L. Goa, et al. Dexmedetomidine. Drugs 2000;59(2):263-8. Biffl, W. L. and E. E. Moore. Splanchnic ischaemia/reperfusion and multiple organ failure. Br J Anaesth 1996;77(1):59-70. Binzoni, T. and D. Van De Ville. Full-field laser-Doppler imaging and its physiological significance for tissue blood perfusion. Phys Med Biol 2008;53(23):6673-94. Boas, D. A. and A. K. Dunn. Laser speckle contrast imaging in biomedical optics. J Biomed Opt 2010;15(1):011109. Boerma, E. C., M. Koopmans, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 2010;38(1):93-100. Boerma, E. C., M. A. Kuiper, et al. Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 2008;34(7):1294-98. Boerma, E. C., P. H. van der Voort, et al. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 2007;35(4):1055-60. Bohlen, H. G. and R. W. Gore. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc Res 1977;14(3):251-64. Bone, R. C., R. A. Balk, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101(6):1644-55. Boos, C. J., P. K. Goon, et al. The endothelium, inflammation, and coagulation in sepsis. Clin Pharmacol Ther 2006;79(1):20-2. Bouchon, A., F. Facchetti, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001;410(6832):1103-7. Brackett, D. J., C. F. Schaefer, et al. Evaluation of cardiac output, total peripheral vascular resistance, and plasma concentrations of vasopressin in the conscious, unrestrained rat during endotoxemia. Circ Shock 1985;17(4):273-84. Brock, K. A. Preanaesthetic use of atropine in small animals. Aust Vet J 2001;79(1):24-5. Brookes, Z. L., N. J. Brown, et al. The dose-dependent effects of fentanyl on rat skeletal muscle microcirculation in vivo. Anesth Analg 2003;96(2):456-62, table of contents. Brown, M. A. and W. K. Jones. NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 2004;9:1201-17. Cain, B. S., D. R. Meldrum, et al. Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med 1999;27(7):1309-18. Candiotti, K. A., S. D. Bergese, et al. Monitored anesthesia care with dexmedetomidine: a prospective, randomized, double-blind, multicenter trial. Anesth Analg 2010;110(1):47-56. Carcillo, J. A. Multiple organ system extracorporeal support in critically ill children. Pediatr Clin N Am 2008;55(3):617-+. Carollo, D. S., B. D. Nossaman, et al. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol 2008;21(4):457-61. Chappell, D., M. Westphal, et al. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol 2009;22(2):155-62. Charleston, C., R. Puana, et al. Morphine sulfate attenuates hemorrhagic shock-induced hyperpermeability. Anesth Analg 2006;103(1):156-61. Chen, Y. S., J. W. Lin, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 2008;372(9638):554-61. Cheng, H., Q. Luo, et al. Laser speckle imaging of blood flow in microcirculation. Phys Med Biol 2004;49(7):1347-57. Chi, O. Z., C. Hunter, et al. The effects of dexmedetomidine on regional cerebral blood flow and oxygen consumption during severe hemorrhagic hypotension in rats. Anesth Analg 2011;113(2):349-55. Chiu, Y. H., C. K. How, et al. Cardiac rescue with intra-aortic balloon counterpulsation in refractory shock due to acute meningococcemia. American Journal of Emergency Medicine 2007;25(2):253-54. Chrysostomou, C., L. Beerman, et al. Dexmedetomidine: a novel drug for the treatment of atrial and junctional tachyarrhythmias during the perioperative period for congenital cardiac surgery: a preliminary study. Anesth Analg 2008;107(5):1514-22. Chrysostomou, C. and C. G. Schmitt. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol 2008;4(5):619-27. Chu, K. S., F. Y. Wang, et al. The effectiveness of dexmedetomidine infusion for sedating oral cancer patients undergoing awake fibreoptic nasal intubation. Eur J Anaesthesiol 2010;27(1):36-40. Chuang, K. I., B. Leung, et al. Heparin protects against septic mortality via apoE-antagonism. Am J Surg 2011. Chvojka, J., R. Sykora, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Critical Care 2008;12(6):R164. Claridge, J. A., T. D. Crabtree, et al. Persistent occult hypoperfusion is associated with a significant increase in infection rate and mortality in major trauma patients. Journal of Trauma-Injury Infection and Critical Care 2000;48(1):8-14. Claridge, J. A., T. D. Crabtree, et al. Persistent occult hypoperfusion is associated with a significant increase in infection rate and mortality in major trauma patients. The Journal of Trauma 2000;48(1):8-14; discussion 14-5. Clough, G. and J. L. Cracowski. Spotlight issue: Microcirculation-from a clinical perspective. Microcirculation 2012;19(1):1-4. Collins, G. J., Jr., J. A. Barber, et al. The effects of operative stress on the coagulation profile. Am J Surg 1977;133(5):612-6. Connolly, H. V., L. A. Maginniss, et al. Transit time heterogeneity in canine small intestine: significance for oxygen transport. J Clin Invest 1997;99(2):228-38. Constantinescu, A., J. A. Spaan, et al. Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation. Thromb Haemost 2010;105(3). Corno, A. Role of the gut in the development of multiple organ dysfunction. Ann Thorac Surg 1994;57(1):263-4. Coursin, D. B. and G. A. Maccioli. Dexmedetomidine. Curr Opin Crit Care 2001;7(4):221-6. Creasey, A. A. and K. Reinhart. Tissue factor pathway inhibitor activity in severe sepsis. Crit Care Med 2001;29(7 Suppl):S126-9. Crimi, E., L. J. Ignarro, et al. Microcirculation and oxidative stress. Free Radic Res 2007;41(12):1364-75. Cross, A. S., S. M. Opal, et al. Immunotherapy of sepsis: flawed concept or faulty implementation? Vaccine 1999;17 Suppl 2:S13-21. Cryer, H. M., R. N. Garrison, et al. Skeletal microcirculatory responses to hyperdynamic Escherichia coli sepsis in unanesthetized rats. Arch Surg 1987;122(1):86-92. Curtis, J. R. Interventions to improve care during withdrawal of life-sustaining treatments. J Palliat Med 2005;8 Suppl 1:S116-31. Daley, R. J., J. A. Rebuck, et al. Prevention of stress ulceration: current trends in critical care. Crit Care Med 2004;32(10):2008-13. Daley RJ, R. J., Welage LS, Rogers FB. Prevention of stress ulceration: current trends in critical care. Crit Care Med 2004;32:2008-13. Danese, S. Role of the vascular and lymphatic endothelium in the pathogenesis of inflammatory bowel disease: 'brothers in arms'. Gut 2011;60(7):998-1008. Danner, R. L., R. J. Elin, et al. Endotoxemia in human septic shock. Chest 1991;99(1):169-75. Darien, B. J., J. Fareed, et al. Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock 1998;9(4):274-81. Daudel, F., H. Freise, et al. Continuous thoracic epidural anesthesia improves gut mucosal microcirculation in rats with sepsis. Shock 2007;28(5):610-4. Davis, J. S., T. W. Yeo, et al. Angiopoietin-2 is increased in sepsis and inversely associated with nitric oxide-dependent microvascular reactivity. Critical Care 2010;14(3):R89. De Backer, D., J. Creteur, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 2006;34(2):403-8. De Backer, D., J. Creteur, et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002;166(1):98-104. De Backer, D., S. Hollenberg, et al. How to evaluate the microcirculation: report of a round table conference. Critical Care 2007;11(5):R101. De Backer, D., G. Ospina-Tascon, et al. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 2010;36(11):1813-25. De Backer, D., C. Verdant, et al. Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med 2006;34(7):1918-24. Deitch, E. A., D. Xu, et al. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review. Front Biosci 2006;11:520-8. Dellinger, R. P., J. M. Carlet, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004;32(3):858-73. Dellinger, R. P., M. M. Levy, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36(1):296-327. den Uil, C. A., W. K. Lagrand, et al. Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study. J Thorac Cardiovasc Surg 2008;136(1):129-34. Desborough, J. P. The stress response to trauma and surgery. Br J Anaesth 2000;85(1):109-17. Diks, S. H., D. J. Richel, et al. LPS signal transduction: the picture is becoming more complex. Curr Top Med Chem 2004;4(11):1115-26. Diller, R., U. Stratmann, et al. Microcirculatory dysfunction in endotoxemic bowel anastomosis: the pathogenetic contribution of microcirculatory dysfunction to endotoxemia-induced healing impairment. J Surg Res 2008;150(1):3-10. Doerschug, K. C., A. S. Delsing, et al. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Critical Care 2010;14(1):R24. Dofferhoff, A. S. M. and J. Buys. The influence of antibiotic-induced filament formation on the release of endotoxin from Gram-negative bacteria. Journal of Endotoxin Research 1996;3(3):187-94. Draijer, M., E. Hondebrink, et al. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 2009;24(4):639-51. Draisma, A., R. Bemelmans, et al. Microcirculation and vascular reactivity during endotoxemia and endotoxin tolerance in humans. Shock 2009;31(6):581-5. Dubin, A., M. O. Pozo, et al. Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. J Crit Care 2010;25(4):659 e1-8. Duling, B. R. and C. Desjardins. Capillary Hematocrit - What Does It Mean. News Physiol Sci 1987;2:66-69. Dunn, A. K., H. Bolay, et al. Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 2001;21(3):195-201. Duran, W. N., V. J. Milazzo, et al. Platelet-activating factor modulates leukocyte adhesion to endothelium in ischemia-reperfusion. Microvasc Res 1996;51(1):108-15. Ehrentraut, S., R. Lohner, et al. In vivo toll-like receptor 4 antagonism restores cardiac function during endotoxemia. Shock 2011;36(6):613-20. el-Tahir Kel, D. Dexmedetomidine: a sedative-analgesic drug for the 21st century. Middle East J Anesthesiol 2002;16(6):577-85. Elbers, P. W., J. Wijbenga, et al. Direct observation of the human microcirculation during cardiopulmonary bypass: effects of pulsatile perfusion. Journal of Cardiothoracic and Vascular Anesthesia 2011;25(2):250-5. Ellis, C. G., J. Jagger, et al. The microcirculation as a functional system. Critical Care 2005;9 Suppl 4:S3-8. Emerson, G. G. and S. S. Segal. Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. American Journal of Physiology 2001;280(1):H160-7. Farquhar, I., C. M. Martin, et al. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 1996;61(1):190-6. Fenton, K. Sepsis and the BBB: brain injury, biomarkers, and the bedside. Crit Care Med 2006;34(7):2022-3. Ferreira, F. L., D. P. Bota, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001;286(14):1754-8. Fleming, G. M. Renal function and extracorporeal membrane oxygenation: The crossroads of concurrent multiple organ support. Pediatr Crit Care Me 2011;12(2):222-23. Foitzik, T., G. Eibl, et al. Endothelin receptor blockade in severe acute pancreatitis leads to systemic enhancement of microcirculation, stabilization of capillary permeability, and improved survival rates. Surgery 2000;128(3):399-407. Frenzel, T., B. Westphal-Varghese, et al. Role of storage time of red blood cells on microcirculation and tissue oxygenation in critically ill patients. Curr Opin Anaesthesiol 2009;22(2):275-80. Freudenberg, M. A. and C. Galanos. Tumor necrosis factor alpha mediates lethal activity of killed gram-negative and gram-positive bacteria in D-galactosamine-treated mice. Infect Immun 1991;59(6):2110-5. Friedlander, M. H., R. Simon, et al. The relationship of packed cell transfusion to red blood cell deformability in systemic inflammatory response syndrome patients. Shock 1998;9(2):84-8. Fuchs, C., E. Ladwig, et al. Argatroban administration reduces leukocyte adhesion and improves capillary perfusion within the intestinal microcirculation in experimental sepsis. Thromb Haemost 2010;104(5):1022-8. Galley, H. F. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 2011;107(1):57-64. Garlanda, C. and E. Dejana. Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 1997;17(7):1193-202. Gelman, S. and P. S. Mushlin. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology 2004;100(2):434-9. Gentry, C. A., K. B. Gross, et al. Adverse outcomes associated with the use of drotrecogin alfa (activated) in patients with severe sepsis and baseline bleeding precautions. Crit Care Med 2009;37(1):19-25. Gerlach, A. T. and J. F. Dasta. Dexmedetomidine: an updated review. Ann Pharmacother 2007;41(2):245-52. Goedhart, P. T., M. Khalilzada, et al. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Optics Express 2007;15(23):15101-14. Gogos, C. A., E. Drosou, et al. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 2000;181(1):176-80. Gonzalo, S., L. Grasa, et al. Lipopolysaccharide-induced intestinal motility disturbances are mediated by c-Jun NH2-terminal kinases. Dig Liver Dis 2011;43(4):277-85. Groner, W., J. W. Winkelman, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 1999;5(10):1209-12. Hagiwara, S., H. Iwasaka, et al. Danaparoid sodium inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats. Critical Care 2008;12(2):R43. Hanssen, S. J., T. Lubbers, et al. Hemolysis results in impaired intestinal microcirculation and intestinal epithelial cell injury. World J Gastroenterol 2011;17(2):213-8. Harada, N., K. Okajima, et al. Dalteparin, a low molecular weight heparin, attenuates inflammatory responses and reduces ischemia-reperfusion-induced liver injury in rats. Crit Care Med 2006;34(7):1883-91. Hardaway, R. M., C. H. Williams, et al. A new approach to the treatment of experimental septic shock. J Surg Res 1996;61(2):311-6. Harrois, A., L. Dupic, et al. Targeting the microcirculation in resuscitation of acutely unwell patients. Current Opinion in Critical Care 2011;17(3):303-7. Harrois, A., O. Huet, et al. Alterations of mitochondrial function in sepsis and critical illness. Curr Opin Anaesthesiol 2009;22(2):143-9. Hasko, G. Receptor-mediated interaction between the sympathetic nervous system and immune system in inflammation. Neurochem Res 2001;26(8-9):1039-44. Hassoun, H. T., B. C. Kone, et al. Post-injury multiple organ failure: the role of the gut. Shock 2001;15(1):1-10. Hatoum, O. A., H. Miura, et al. The vascular contribution in the pathogenesis of inflammatory bowel disease. American Journal of Physiology 2003;285(5):H1791-6. Herbertson, M. J., H. A. Werner, et al. Anti-tumor necrosis factor-alpha prevents decreased ventricular contractility in endotoxemic pigs. Am J Respir Crit Care Med 1995;152(2):480-8. Herbertson, M. J., H. A. Werner, et al. Nitric oxide synthase inhibition partially prevents decreased LV contractility during endotoxemia. Am J Physiol 1996;270(6 Pt 2):H1979-84. Hersch, M., J. A. Scott, et al. Differential inducible nitric oxide synthase activity in circulating neutrophils vs. mononuclears of septic shock patients. Intensive Care Med 2005;31(8):1132-5. Hickey, M. J. Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment. Clin Sci (Lond) 2001;100(1):1-12. Hirsh, J. and R. Raschke. Heparin and low-molecular-weight heparin - The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004;126(3):188s-203s. Hofer, C. K., A. Senn, et al. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTractrade mark and PiCCOplustrade mark system. Critical Care 2008;12(3):R82. Hoffman, J. N., J. M. Fertmann, et al. Immunoglobulin M-enriched human intravenous immunoglobulins reduce leukocyte-endothelial cell interactions and attenuate microvascular perfusion failure in normotensive endotoxemia. Shock 2008;29(1):133-9. Hollenberg, S. M., M. Broussard, et al. Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circulation Research 2000;86(7):774-8. Holt, D. B., R. R. Delaney, et al. Effects of combination dobutamine and vasopressin therapy on microcirculatory blood flow in a porcine model of severe endotoxic shock. J Surg Res 2011;171(1):191-8. Holzheimer, R. G., J. F. Hirte, et al. Different endotoxin release and IL-6 plasma levels after antibiotic administration in surgical intensive care patients. Journal of Endotoxin Research 1996;3(3):261-67. Hotchkiss, R. S., P. E. Swanson, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999;27(7):1230-51. Howell, M. D., M. Donnino, et al. Occult hypoperfusion and mortality in patients with suspected infection. Intensive Care Med 2007;33(11):1892-9. Iba, T., A. Kidokoro, et al. Factor Xa-inhibitor (DX-9065a) modulates the leukocyte-endothelial cell interaction in endotoxemic rat. Shock 2002;17(2):159-62. Iba, T., A. Kidokoro, et al. Antithrombin ameliorates endotoxin-induced organ dysfunction more efficiently when combined with danaparoid sodium than with unfractionated heparin. Intensive Care Med 2005;31(8):1101-8. Iba, T. and T. Miyasho. Danaparoid sodium attenuates the increase in inflammatory cytokines and preserves organ function in endotoxemic rats. Crit Care 2008;12(4):R86. Iba, T. and T. Takayama. Enoxaparin attenuates endothelial damage with less bleeding compared with unfractionated heparin in endotoxemic rats. Shock 2009;32(5):530-4. Ickeringill, M., Y. Shehabi, et al. Dexmedetomidine infusion without loading dose in surgical patients requiring mechanical ventilation: haemodynamic effects and efficacy. Anaesth Intensive Care 2004;32(6):741-5. Ince, C. The microcirculation is the motor of sepsis. Critical Care 2005;9 Suppl 4:S13-9. Ince, C. and M. Sinaasappel. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 1999;27(7):1369-77. Inohara, N., Y. Ogura, et al. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol 2002;5(1):76-80. Iqbal, Z. and M. Cohen. Enoxaparin: a pharmacologic and clinical review. Expert Opin Pharmacother 2011;12(7):1157-70. Ishibashi, N., Y. Iwata, et al. Aprotinin protects the cerebral microcirculation during cardiopulmonary bypass. Perfusion 2009;24(2):99-105. Jacob, M., D. Bruegger, et al. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 2006;104(6):1223-31. Jacobi, J., G. L. Fraser, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 2002;30(1):119-41. Jacobs, F. M. and F. G. Brivet. Early venovenous haemodiafiltration for sepsis-related multiple organ failure. Critical Care 2006;10(2):409. Jaimes, F., G. De La Rosa, et al. Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study). Crit Care Med 2009;37(4):1185-96. Jansen, T. C., J. van Bommel, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010;182(6):752-61. Jhanji, S., C. Lee, et al. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intens Care Med 2009;35(4):671-77. Jhanji, S., S. Stirling, et al. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 2009;37(6):1961-6. Jones, A. E., N. I. Shapiro, et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 2010;303(8):739-46. Jones, H. U., J. B. Muhlestein, et al. Preoperative use of enoxaparin compared with unfractionated heparin increases the incidence of re-exploration for postoperative bleeding after open-heart surgery in patients who present with an acute coronary syndrome: clinical investigation and reports. Circulation 2002;106(12 Suppl 1):I19-22. Jorm, C. M. and J. A. Stamford. Actions of the hypnotic anaesthetic, dexmedetomidine, on noradrenaline release and cell firing in rat locus coeruleus slices. Br J Anaesth 1993;71(3):447-9. Jung, C., M. Ferrari, et al. Evaluation of the microcirculation during extracorporeal membrane-oxygenation. Clinical Hemorheology and Microcirculation 2008;40(4):311-4. Jung, C., H. R. Figulla, et al. High frequency of organ failures during extracorporeal membrane oxygenation: is the microcirculation the answer? Ann Thorac Surg 2010;89(1):345-6. Kalil, A. C., S. P. Larosa, et al. Influence of Severity of Illness on the Effects of Eritoran Tetrasodium (E5564) and on Other Therapies for Severe Sepsis. Shock 2011;36(4):327-31. Kamibayashi, T., Y. Hayashi, et al. Role of the vagus nerve in the antidysrhythmic effect of dexmedetomidine on halothane/epinephrine dysrhythmias in dogs. Anesthesiology 1995;83(5):992-9. Kamibayashi, T. and M. Maze. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology 2000;93(5):1345-9. Kao, R., A. Xenocostas, et al. Erythropoietin improves skeletal muscle microcirculation and tissue bioenergetics in a mouse sepsis model. Critical Care 2007;11(3):R58. Kaplan, L. J. and J. A. Kellum. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 2004;32(5):1120-4. Kaya, F. N., B. Yavascaoglu, et al. Intravenous dexmedetomidine, but not midazolam, prolongs bupivacaine spinal anesthesia. Can J Anaesth 2010;57(1):39-45. Kellum, J. A. and D. C. Angus. Genetic variation and risk of sepsis. Minerva Anestesiologica 2003;69(4):245-53. Khan, A. U., R. L. Delude, et al. Liposomal NAD(+) prevents diminished O(2) consumption by immunostimulated Caco-2 cells. Am J Physiol Lung Cell Mol Physiol 2002;282(5):L1082-91. Khan, Z. P., C. N. Ferguson, et al. alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 1999;54(2):146-65. Kidokoro, A., T. Iba, et al. Alterations in coagulation and fibrinolysis during sepsis. Shock 1996;5(3):223-8. Kimberger, O., M. Arnberger, et al. Goal-directed colloid administration improves the microcirculation of healthy and perianastomotic colon. Anesthesiology 2009;110(3):496-504. Klein, K. U., K. Fukui, et al. Human cerebral microcirculation and oxygen saturation during propofol-induced reduction of bispectral index. Br J Anaesth 2011;107(5):735-41. Kliegel, A., H. Losert, et al. Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine (Baltimore) 2004;83(5):274-9. Klijn, E., C. A. Den Uil, et al. The heterogeneity of the microcirculation in critical illness. Clin Chest Med 2008;29(4):643-54. Koch, M., D. De Backer, et al. Effects of propofol on human microcirculation. Br J Anaesth 2008;101(4):473-8. Kohl, B. A. and C. S. Deutschman. The inflammatory response to surgery and trauma. Current Opinion in Critical Care 2006;12(4):325-32. Komori, M., K. Takada, et al. Effects of colloid resuscitation on peripheral microcirculation, hemodynamics, and colloidal osmotic pressure during acute severe hemorrhage in rabbits. Shock 2005;23(4):377-82. Koroglu, A., S. Demirbilek, et al. Sedative, haemodynamic and respiratory effects of dexmedetomidine in children undergoing magnetic resonance imaging examination: preliminary results. Br J Anaesth 2005;94(6):821-4. Kozar, R. A., Z. Peng, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg 2011;112(6):1289-95. Krejci, V., L. B. Hiltebrand, et al. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit Care Med 2006;34(5):1456-63. Kress, J. P., A. S. Pohlman, et al. Sedation and analgesia in the intensive care unit. Am J Respir Crit Care Med 2002;166(8):1024-8. Kubes, P., M. Suzuki, et al. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991;88(11):4651-5. Kucukakin, B., I. Gogenur, et al. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J Surg Res 2009;152(2):338-47. Kunisawa, T., O. Nagata, et al. Dexmedetomidine suppresses the decrease in blood pressure during anesthetic induction and blunts the cardiovascular response to tracheal intubation. J Clin Anesth 2009;21(3):194-9. Lam, C., K. Tyml, et al. Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 1994;94(5):2077-83. Laterre, P. F., E. Abraham, et al. ADDRESS (ADministration of DRotrecogin alfa [activated] in Early stage Severe Sepsis) long-term follow-up: one-year safety and efficacy evaluation. Crit Care Med 2007;35(6):1457-63. Lawrence, C. J., F. W. Prinzen, et al. The effect of dexmedetomidine on the balance of myocardial energy requirement and oxygen supply and demand. Anesth Analg 1996;82(3):544-50. Lazar, G., J. Kaszaki, et al. Thoracic epidural anesthesia improves the gastric microcirculat | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65952 | - |
| dc.description.abstract | 儘管早期目標導引治療與敗血症治療準則已推行多年,嚴重敗血症及敗血性休克的死亡率依然很高,降低嚴重敗血症及敗血性休克的死亡率是當前重症醫學努力的目標。隨著光學影像技術的進步,有學者觀察到敗血症病人有微血管循環異常的現象。敗血症的全身發炎反應會引起過度血管擴張造成低血壓,內皮細胞所大量分泌的發炎粘合分子、細胞激素和趨化素會增加微血管通透性而造成微血管滲漏與組織水腫。此外,內毒素會刺激內皮細胞表現組織因子來活化凝血作用,同時內毒素也會抑制內皮細胞相關的抗凝血機制和內因性纖維蛋白溶解,進而導致微血管血栓形成。上述過度血管擴張、微血管滲漏和微血管血栓都會造成微血管循環異常,導致組織與器官因灌流不足而損傷,嚴重時可造成多重器官功能失調症候群及死亡。本論文的首要目的是使用旁流暗視野影像顯微鏡測量嚴重敗血症及敗血性休克病人的舌下微血管循環,並藉此探討敗血症嚴重度與微血管循環異常程度的關係,更進一步本論文嘗試建立一個可觀察腸微血管循環的內毒素血症大鼠實驗模式,觀察不同劑量內毒素所造成的微血管循環異常,動物實驗中主要觀測微血管循環的儀器有以下兩種:(1) 全域雷射灌流影像儀可快速並連續定量微血管循環血流強度的變化;(2) 旁流暗視野影像顯微鏡可在預設時間點測量總微小血管(< 20 μm)密度、灌流微小血管密度、微血管血流指標、異質性指標。因為內毒素和類鐸接受器4 (Toll-like receptor 4, TLR4)的交互作用是革蘭氏陰性菌引發敗血症及微血管循環異常的主要機制,本論文假設使用TLR4的拮抗劑(eritoran tetrasodium [E5564])可抑制內毒素血症所引起的微血管循環異常,因此本論文的第二個目的是用內毒素血症大鼠實驗模式探討eritoran是否能改善腸微血管循環異常。在罹患敗血症時,因為發炎反應與凝血系統的交互作用會引發瀰漫性血管內凝血而阻塞微血管循環,各種抗凝血藥物也常被用來研究治療敗血症的效果,本論文的第三個目的是使用內毒素血症大鼠實驗模式來探討低分子量肝素(enoxaparin)是否能改善腸微血管循環異常。
敗血症的臨床試驗結果顯示28天存活組病人的總微小血管密度、灌流微小血管密度和微血管血流指標都較28天死亡組病人高。內毒素血症大鼠的實驗結果顯示接受高劑量內毒素(15 mg/kg)大鼠的腸微血管循環血流灌流強度下降最多。使用eritoran的內毒素血症大鼠在微血管循環血流強度、灌流微小血管密度、微血管血流指標和異質性指標等方面都較未使用eritoran的大鼠好,使用eritoran的內毒素血症大鼠之腫瘤壞死因子α、間白素–1β和D–雙合蛋白等血中濃度也較未使用eritoran的大鼠低,使用eritoran的內毒素血症大鼠之微血管血栓也較少。在enoxaparin的動物實驗中發現使用低分子量肝素(enoxaparin)的內毒素血症大鼠可藉由減少血栓的形成及維持較高的灌流微小血管密度來改善腸微血管循環。 手術壓力和疼痛所引發的發炎反應與交感神經活化可造成組織灌流不足,在此情況下丙酮酸會經無氧醣解作用產生乳酸,造成高乳酸血症;此外過度的發炎反應會增加有氧醣解作用,致使產生的丙酮酸量超過丙酮酸鹽脫氫酵素所能代謝的速度,過多的丙酮酸也會被轉成乳酸。因為組織灌流不足與過度發炎反應都與微血管循環有關,所以本論文的第四個目的是用外科術後重症病人的臨床試驗來探討術後24小時乳酸值 ≧ 3 mmol/L的病人與乳酸值 < 3 mmol/L的病人之泛手術期微血管循環相關參數是否不同。因為鎮靜藥物dexmedetomidine不但可抑制交感神經引起的過度微血管收縮,也可抑制發炎和凝血,本論文假設dexmedetomidine具有潛力可改善手術壓力與疼痛造成的微血管循環異常,所以本論文的第五個目的是建立一個大鼠實驗模式來探討dexmedetomidine是否可改善手術壓力與疼痛所造成的微血管循環異常。 外科術後重症病人的臨床試驗研究結果顯示手術後24小時血中乳酸值 < 3 mmol/L的病人之泛手術期總微小血管密度與灌流微小血管密度都較乳酸值 ≧ 3 mmol/L的病人高,其中手術前和術後第一小時的灌流微小血管密度跟術後24小時的乳酸值有統計顯著負相關,術後第一小時的總微小血管密度也與術後24小時的乳酸值有統計顯著負相關。在大鼠實驗模式中發現手術壓力與疼痛會造成腸黏膜與腸漿膜肌肉層微血管循環異常,使用dexmedetomidine除了可以改善手術壓力與疼痛造成的心跳變快、血壓升高,同時也可維持腸微血管循環血流強度及正常灌流微小血管密度。 微血管循環在未來醫學扮演的角色會日趨重要,需要更多研究去探討如何早期診斷及治療病人的微血管循環異常,並進一步評估維持良好微血管循環對降低多重器官損傷的臨床效益,希望能幫病人爭取更多時間接受多元模式醫療照護組合以提高存活率與生活品質。 | zh_TW |
| dc.description.abstract | Despite early goal-directed therapy and Surviving Sepsis Campaign have been developed for many years, the mortality of severe sepsis and septic shock is still high. Recent advances in imaging technology have enabled the observation of microcirculation, and several studies have demonstrated that derangements in microvascular flow play a role in sepsis-induced multiple organ dysfunction syndrome and death. The systemic inflammatory response syndrome may cause excess vasodilation and result in hypotension. The endothelial cells may secrete inflammatory adhesion molecules, cytokines, and chemokines, and these may increase microvascular permeability and result in capillary leakage and tissue edema. Moreover, endotoxin may activate the coagulatory function of endothelial cells and inhibit the anti-coagulation activity of endothelial cells and endogenous fibrinolysis, and it may result in microvascular thrombosis. Excess vasodilation, capillary leakage, and microvascular thrombosis can result in microcirculatory dysfunction, and it will lead to tissue hypoperfusion and finally to multiple organ dysfunction syndrome and death. The first aim of this thesis is to investigate the relation between severity of severe sepsis and septic shock and the severity of sublingual microcirculatory dysfunction in critically ill patients using a sidestream dark-field (SDF) video microscope. Furthermore, we also investigated the relation between severity of endotoxemia and the severity of intestinal microcirculatory dysfunction in a rat model. The following two devices were used to investigate the microcirculation in animal research: (1) full-field laser perfusion imager was used to continuously measure the change of microcirculatory blood flow intensity; and (2) SDF video microscope was used to investigate total small-vessel (< 20 μm) density (TSVD), perfused small-vessel density (PSVD), microvascular flow index (MFI), and heterogeneity index (HI). Because the interaction between lipopolysaccharide (LPS, from gram-negative bacteria) and Toll-like receptor 4 (TLR4) induces sepsis and subsequent microcirculatory dysfunction, this thesis hypothesized that antagonizing LPS-related signaling pathway by a TLR4 antagonist, eritoran tetrasodium (E5564), might reduce endotoxemia-related microcirculatory dysfunction. The second aim of this thesis is to investigate whether eritoran can improve intestinal microcirculation using the endotoxemic rat model. Moreover, interaction between inflammation and coagulation system may induce microvascular thrombosis during sepsis, and the third aim of this thesis is to investigate whether enoxaparin can improve intestinal microcirculation using the endotoxemic rat model.
The results of clinical research of sepsis revealed that TSVD, PSVD, and MFI were higher in the 28-day survival group than in the 28-day non-survival group. The results of animal research of endotoxemia revealed that intestinal microcirculatory blood flow intensity were significantly lower in the high dose (15 mg/kg) LPS group than the other groups. Moreover, microcirculatory blood flow intensity, PSVD, MFI, and HI were better in the eritoran treatment group than the LPS group. Eritoran also reduced blood level of tumor necrosis factor α, interleukin-1β, and D-dimer and microthrombosis formation. This thesis also revealed that enoxaparin can restore intestinal microcirculation by reducing microthrombosis formation and maintaining higher PSVD. Surgical stress and pain may induce excess inflammation and activation of sympathetic nervous system and lead to tissue hypoperfusion. Both hypoperfusion-related anaerobic glycolysis and excess inflammation-related pyruvate overproduction can cause hyperlactemia. Because microcirculatory dysfunction may lead to tissue hypoperfusion and excess inflammation, the fourth aim of this thesis is to compare the perioperative microcirculation between critically ill surgical patients with blood lactate level ≧ 3 mmol/L and those with blood lactate level < 3 mmol/L at 24h after surgery. Because dexmedetomidine can induce sympatholytic vasodilation, inhibit inflammation, and produce hypocoagulation, it has the potential to improve surgical stress and pain-related microcirculatory dysfunction. The fifth aim of this thesis is to establish a rat model and investigate whether dexmedetomidine can improve intestinal microcirculatory dysfunction resulting from surgical stress and pain. The results of clinical research of critically ill surgical patients revealed that perioperative TSVD and PSVD were lower in patients with blood lactate level ≧ 3 mmol/L than in patients with blood lactate level < 3 mmol/L at 24h after surgery. There were significant correlations between postoperative 1h TSVD and PSVD and postoperative 24h blood lactate level. The results of animal research of surgical stress and pain revealed that the microcirculatory blood flow intensity and PSVD in intestinal mucosa and serosal-muscular layer decreased during surgical stress and pain. Moreover, it also revealed that dexmedetomidine can attenuate tachycardia and hypertension and restore the intestinal microcirculatory blood flow intensity and PSVD. Microcirculation will play a more important role in the future medicine. More researches are required to investigate how to early diagnose and treat microcirculatory dysfunction in patients, and further to evaluate the clinical benefit of maintain good microcirculation on reducing multiple organ injury. Wish gaining more time to conduct multimodal therapy for the patient can improve survival and quality of life. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:16:25Z (GMT). No. of bitstreams: 1 ntu-101-Q93421005-1.pdf: 5142252 bytes, checksum: 8b2b1e7707fb85bf110fe6ff20bc7aad (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 v 英文摘要 viii 第一章 緒論 第一節、重症醫學緒論 1 第二節、微血管循環緒論 2 第三節、敗血症與微血管循環異常 9 第四節、泛手術期微血管循環異常 17 第五節、擬研究的問題及其重要性 21 第六節、研究假說與特定目的 22 第二章 研究方法與材料 第一節、研究嚴重敗血症、敗血性休克和內毒素血症的嚴重程度與微血管循環的異常程度之關係 23 第二節、研究Toll-like receptor 4 antagonist (Eritoran)對內毒素血症大鼠微血管循環異常的效果 29 第三節、研究低分子量肝素(Enoxaparin)對內毒素血症大鼠微血管循環異常的效果 32 第四節、研究外科術後重症病人血中乳酸值與微血管循環的關係 34 第五節、研究Dexmedetomidine對大鼠手術壓力與疼痛微血管循環異常的效果 36 第三章 研究結果 第一節、嚴重敗血症、敗血性休克和內毒素血症的嚴重程度與 微血管循環的異常程度之關係 38 第二節、Toll-like receptor 4 antagonist (Eritoran)對內毒素血症 大鼠微血管循環異常的效果 40 第三節、低分子量肝素(Enoxaparin)對內毒素血症大鼠微血管 循環異常的效果 42 第四節、外科術後重症病人血中乳酸值與微血管循環的關係 43 第五節、Dexmedetomidine對大鼠手術壓力與疼痛微血管循環 異常的效果 44 第四章 討論 45 第五章 展望 67 第六章 英文簡述 80 參考文獻 103 圖一至三十五 140 表一至十三 175 縮寫表 188 附錄 189 | |
| dc.language.iso | zh-TW | |
| dc.subject | 甲二型腎上腺素接受器作用劑 | zh_TW |
| dc.subject | 乳酸 | zh_TW |
| dc.subject | 手術 | zh_TW |
| dc.subject | 低分子量肝素 | zh_TW |
| dc.subject | 類鐸接受器4(Toll-like receptor 4)拮抗劑 | zh_TW |
| dc.subject | 內毒素 | zh_TW |
| dc.subject | 微血管循環 | zh_TW |
| dc.subject | 敗血症 | zh_TW |
| dc.subject | surgery | en |
| dc.subject | microcirculation | en |
| dc.subject | endotoxin | en |
| dc.subject | Toll-like receptor 4 antagonist | en |
| dc.subject | low molecular weight heparin | en |
| dc.subject | lactate | en |
| dc.subject | alpha-2 adrenoceptors agonist | en |
| dc.subject | sepsis | en |
| dc.title | 微血管循環與重症醫學 | zh_TW |
| dc.title | Microcirculation and Critical Care Medicine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李繼源,鄭文芳,余佳慧,余黃平 | |
| dc.subject.keyword | 敗血症,微血管循環,內毒素,類鐸接受器4(Toll-like receptor 4)拮抗劑,低分子量肝素,手術,乳酸,甲二型腎上腺素接受器作用劑, | zh_TW |
| dc.subject.keyword | sepsis,microcirculation,endotoxin,Toll-like receptor 4 antagonist,low molecular weight heparin,surgery,lactate,alpha-2 adrenoceptors agonist, | en |
| dc.relation.page | 191 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
