Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全
dc.contributor.authorHong-yu Chienen
dc.contributor.author簡鴻宇zh_TW
dc.date.accessioned2021-06-17T00:16:18Z-
dc.date.available2012-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-02
dc.identifier.citationReferences
[1] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, A study of the equation of
diffusion with increase in the quantity of matter, and its application to a biological
problem, Bjull. Moskovskovo Gos. Univ., 17, pp. 1-12
[2] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7, pp.
355-369.
[3] P. Grindrod, Patterns and Waves: The Theory and Applications of Reaction-Diffusion
Equations, Clarendon Press (1991), Oxford
[4] N. F. Britton, Aggregation and the Competitive Exclusion Principle, Journal of Theoretical
Biology (1989) 136, 57 - 66.
[5] S. Genieys, V. Volpert and P. Auger, Pattern and Waves for a Model in Population
Dynamics with Nonlocal Consumption of Resources, Mathematical Modelling of
Nature Phenomena. Vol.1 No.1 (2006): Population dynamics pp. 65-82
[6] H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP
equation: traveling waves and steady states, Nonlinearity 22 (2009), 2813-2844.
[7] N. Apreutessi, A. Ducrot and V. Volpert, Traveling waves for integro-differential
equations in population dynamics, DISCRETE AND CONTINUOUS DYNAMICAL
SYSTEMS SERIES B Volume 11, Number 3, May 2009, pp 541-561
[8] N. Apreutesei, N. Bessonov, V. Volpert and V. Vougalter, Spatial Structures and
Generalized Traveling Waves for an Integro-Differential Equation DCDS B, 13 (2010),
No. 3, 537-557 (2010).
[9] J. Fang and X.Q. Zhao, Monotone Wavefronts of the Non-local Fisher-KPP equation,
Nonlinearity 24 (2011), 3043-3054
[10] V. Volpert, V. Vougalter, Stability and instability of solutions of a nonlocal reactiondiffusion
when the essential speactrum crosses the imaginary axis, 2011
[11] D. Duehring and W. Huang, Periodic Traveling Waves for Diffusion Equations with
Time Delayed and Non-local Responding Reaction, Jounal of Dynamics and Differential
Equations, Vol. 19, No. 2, June 2007.
[12] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel and H.-O. Walther, Delay Equations:
Functional-, Complex-, and Nonlinear Analysis Springer-Verlag (1995)
[13] O. Arino, M. L. Hbid and E. Ait Dads, Delay Differential Equations and Applications,
Springer, 2006
[14] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations,
Springer, 1993
[15] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer, c2001
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65948-
dc.description.abstract本文討論帶有Fisher 型非局部反應項的反應擴散方程,其非局部項由以某種機率
分佈為積分核的摺積組成。為瞭解積分核對方程式解造成的影響,與古典Fisher-KPP 方程的穩定解、行波
解做比較,我們希望能夠構造出不同於古典方程的解。
最後若考慮非對稱的積分核,利用bifurcation 與singular perturbation 方法,
我們可以構造出具週期性的行波解。
為整個理論的完整,在第二節中本文引用前人的方法並做一些改進,證明具一
般積分核的方程式行波解存在性。
zh_TW
dc.description.abstractIn this article, the reaction-diffusion equation arising from population dynamics with
Fisher-type non-local consumptions defined through an interaction integral kernel is concerned. In order to know the impact of the integral kernels on the solutions, we try and
expect that there exist some non-typical traveling waves different from waves of the
classical Fisher equation.
Through the bifurcation and perturbation methods, we can generate periodic
traveling waves of these equations for the asymmetric integral kernels.
By the way, to make the result complete, the existence of solutions for a general
class of integral kernel is shown in section 2 through a little modification of methods
in the references.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:16:18Z (GMT). No. of bitstreams: 1
ntu-101-R97221034-1.pdf: 1837335 bytes, checksum: d576c6cd72a2ced2dbd1ff9d0db57eef (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審訂書i
誌謝ii
中文摘要iii
英文摘要iv
1 Introduction 1
1.1 The Fisher-KPP equation: the traveling wave and stationary solutions 1
1.2 The non-local Fisher-KPP equation . . . . . . . . . . . . . . . . . . . 2
1.3 The main results and organization of this article . . . . . . . . . . . . 4
2 The existence of traveling waves of non-local Fisher-KPP equation 5
2.1 Priori estimates for the solutions of the non-local problem on finite
intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Existence of solutions of each non-local problem on finite interval . . 12
2.3 Existence of solution on the whole domain R . . . . . . . . . . . . . . 13
3 Periodic solution of the delay equation 14
3.1 Evolution equation with single time delay . . . . . . . . . . . . . . . 14
3.2 Evolution equation with distributed time delay . . . . . . . . . . . . 14
4 Singular perturbation 15
4.1 Transform to an integral equation . . . . . . . . . . . . . . . . . . . . 16
4.2 Analysis on linearized equation . . . . . . . . . . . . . . . . . . . . . 18
4.3 The existence of periodic traveling wave . . . . . . . . . . . . . . . . 21
5 The periodic traveling wave of the Fisher-KPP with asymmetric
non-local consumption 29
Reference 30
dc.language.isoen
dc.subject非局部反應項zh_TW
dc.subject週期行波解zh_TW
dc.subject反應擴散方程zh_TW
dc.subjectperiodic traveling waveen
dc.subjectreaction diffusion equationen
dc.subjectnon-local nonlinearityen
dc.title具非局部項之反應擴散方程的週期行波解zh_TW
dc.titlePeriodic Traveling Waves of a Reaction Diffusion Equation with Non-local Nonlinearityen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王振男,夏俊雄,林景隆
dc.subject.keyword反應擴散方程,非局部反應項,週期行波解,zh_TW
dc.subject.keywordreaction diffusion equation,non-local nonlinearity,periodic traveling wave,en
dc.relation.page31
dc.rights.note有償授權
dc.date.accepted2012-07-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved