請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65948完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊全 | |
| dc.contributor.author | Hong-yu Chien | en |
| dc.contributor.author | 簡鴻宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:16:18Z | - |
| dc.date.available | 2012-07-18 | |
| dc.date.copyright | 2012-07-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-02 | |
| dc.identifier.citation | References
[1] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjull. Moskovskovo Gos. Univ., 17, pp. 1-12 [2] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7, pp. 355-369. [3] P. Grindrod, Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, Clarendon Press (1991), Oxford [4] N. F. Britton, Aggregation and the Competitive Exclusion Principle, Journal of Theoretical Biology (1989) 136, 57 - 66. [5] S. Genieys, V. Volpert and P. Auger, Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources, Mathematical Modelling of Nature Phenomena. Vol.1 No.1 (2006): Population dynamics pp. 65-82 [6] H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: traveling waves and steady states, Nonlinearity 22 (2009), 2813-2844. [7] N. Apreutessi, A. Ducrot and V. Volpert, Traveling waves for integro-differential equations in population dynamics, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES B Volume 11, Number 3, May 2009, pp 541-561 [8] N. Apreutesei, N. Bessonov, V. Volpert and V. Vougalter, Spatial Structures and Generalized Traveling Waves for an Integro-Differential Equation DCDS B, 13 (2010), No. 3, 537-557 (2010). [9] J. Fang and X.Q. Zhao, Monotone Wavefronts of the Non-local Fisher-KPP equation, Nonlinearity 24 (2011), 3043-3054 [10] V. Volpert, V. Vougalter, Stability and instability of solutions of a nonlocal reactiondiffusion when the essential speactrum crosses the imaginary axis, 2011 [11] D. Duehring and W. Huang, Periodic Traveling Waves for Diffusion Equations with Time Delayed and Non-local Responding Reaction, Jounal of Dynamics and Differential Equations, Vol. 19, No. 2, June 2007. [12] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis Springer-Verlag (1995) [13] O. Arino, M. L. Hbid and E. Ait Dads, Delay Differential Equations and Applications, Springer, 2006 [14] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 1993 [15] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, c2001 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65948 | - |
| dc.description.abstract | 本文討論帶有Fisher 型非局部反應項的反應擴散方程,其非局部項由以某種機率
分佈為積分核的摺積組成。為瞭解積分核對方程式解造成的影響,與古典Fisher-KPP 方程的穩定解、行波 解做比較,我們希望能夠構造出不同於古典方程的解。 最後若考慮非對稱的積分核,利用bifurcation 與singular perturbation 方法, 我們可以構造出具週期性的行波解。 為整個理論的完整,在第二節中本文引用前人的方法並做一些改進,證明具一 般積分核的方程式行波解存在性。 | zh_TW |
| dc.description.abstract | In this article, the reaction-diffusion equation arising from population dynamics with
Fisher-type non-local consumptions defined through an interaction integral kernel is concerned. In order to know the impact of the integral kernels on the solutions, we try and expect that there exist some non-typical traveling waves different from waves of the classical Fisher equation. Through the bifurcation and perturbation methods, we can generate periodic traveling waves of these equations for the asymmetric integral kernels. By the way, to make the result complete, the existence of solutions for a general class of integral kernel is shown in section 2 through a little modification of methods in the references. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:16:18Z (GMT). No. of bitstreams: 1 ntu-101-R97221034-1.pdf: 1837335 bytes, checksum: d576c6cd72a2ced2dbd1ff9d0db57eef (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審訂書i
誌謝ii 中文摘要iii 英文摘要iv 1 Introduction 1 1.1 The Fisher-KPP equation: the traveling wave and stationary solutions 1 1.2 The non-local Fisher-KPP equation . . . . . . . . . . . . . . . . . . . 2 1.3 The main results and organization of this article . . . . . . . . . . . . 4 2 The existence of traveling waves of non-local Fisher-KPP equation 5 2.1 Priori estimates for the solutions of the non-local problem on finite intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Existence of solutions of each non-local problem on finite interval . . 12 2.3 Existence of solution on the whole domain R . . . . . . . . . . . . . . 13 3 Periodic solution of the delay equation 14 3.1 Evolution equation with single time delay . . . . . . . . . . . . . . . 14 3.2 Evolution equation with distributed time delay . . . . . . . . . . . . 14 4 Singular perturbation 15 4.1 Transform to an integral equation . . . . . . . . . . . . . . . . . . . . 16 4.2 Analysis on linearized equation . . . . . . . . . . . . . . . . . . . . . 18 4.3 The existence of periodic traveling wave . . . . . . . . . . . . . . . . 21 5 The periodic traveling wave of the Fisher-KPP with asymmetric non-local consumption 29 Reference 30 | |
| dc.language.iso | en | |
| dc.subject | 非局部反應項 | zh_TW |
| dc.subject | 週期行波解 | zh_TW |
| dc.subject | 反應擴散方程 | zh_TW |
| dc.subject | periodic traveling wave | en |
| dc.subject | reaction diffusion equation | en |
| dc.subject | non-local nonlinearity | en |
| dc.title | 具非局部項之反應擴散方程的週期行波解 | zh_TW |
| dc.title | Periodic Traveling Waves of a Reaction Diffusion Equation with Non-local Nonlinearity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王振男,夏俊雄,林景隆 | |
| dc.subject.keyword | 反應擴散方程,非局部反應項,週期行波解, | zh_TW |
| dc.subject.keyword | reaction diffusion equation,non-local nonlinearity,periodic traveling wave, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
