Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65935
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李瑩英(Yng-Ing Lee)
dc.contributor.authorChih-Wei Chenen
dc.contributor.author陳志偉zh_TW
dc.date.accessioned2021-06-17T00:15:47Z-
dc.date.available2012-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-04
dc.identifier.citation[1] M. T. Anderson, Convergence and the rigidity of manifolds under Ricci curvature bounds. Invent. Math., 102:429-445, 1990.
[2] S. Angenent and D. Knopf. An example of neckpiching for Ricci flow on S^{n+1}. Math. Res. Lett., 11(4):493-518, 2004.
[3] S. Bando, A. Kasue, and H. Nakajima. On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math., 97:313-349, 1989.
[4] C. Bohm and B. Wilking. Manifolds with positive curvature operators are space forms. Ann. of Math., 167(3):1079-1097, 2008.
[5] S. Brendle and R. Schoen. Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math., 200:1-13, 2008.
[6] S. Brendle and R. Schoen. Manifolds with 1/4-pinched curvature are space forms. J. Amer. Math. Soc., 22:287-307, 2009.
[7] E. Cabezas-Rivas and P. Topping. The canonical expanding soliton and Harnack inequalities for the Ricci flow. ArXiv:0911.5036v1, 2009.
[8] H.-D. Cao. Limits of solutions to the Kahler-Ricci flow. J. Diff. Geom., 45:257-272, 1997.
[9] H.-D. Cao. Recent progress on Ricci solitons, volume 11 of Adv. Lect. Math. Int. Press., 2010.
[10] H.-D. Cao, B.-L. Chen, and X.-P. Zhu. Recent developments on Hamilton's Ricci flow, volume XII of Surv. Diff. Geom. Int. Press., 2008.
[11] H.-D. Cao. and D.T. Zhou. On complete gradient shrinking Ricci solitons. J. Diff. Geom., 2:175-186, 2010.
[12] H.-D. Cao. and X.-P. Zhu. A complete proof of the Poincare and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math., 10(2):165-492, 2006.
[13] G. Catino and C. Mantegazza. Evolution of the Weyl tensor under the Ricci flow. Ann. Inst. Fourier. to appear.
[14] J. Cheeger and T. H. Colding. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math., 144:189-237, 1996.
[15] J. Cheeger and D. G. Ebin. Comparison Theorems in Riemannain Geometry, volume 9 of North-Holland Math. Library.
[16] J. Cheeger, M. Gromov, and M. Taylor. Finite ropagation speed, kernel estimates for functions of the laplace operator, and the geometry of complete riemannian manifolds.
J. Diff. Geom., 17:15-53, 1982.
[17] B.-L. Chen. Strong uniqueness of the Ricci flow. J. Diff. Geom., 82:363-382, 2009.
[18] B.-L. Chen and X.-P. Zhu. Complete Riemannian manifolds with pointwise pinched curvature. Invent. Math., 140:423-452, 2000.
[19] B.-L. Chen and X.-P. Zhu. Ricci flow with surgery on four-manifolds with positive isotropic curvature. J. Diff. Geom., 74(2):177{264, 2006.
[20] B.-L. Chen and X.-P. Zhu. Uniqueness of the Ricci flow on complete noncompact manifolds. J. Diff. Geom., 74(1):119-154, 2006.
[21] C.-W. Chen. Volume estimates and the asymptotic behavior of expanding gradient Ricci solitons. ArXiv:1105.6028v1, 2011.
[22] C.-W. Chen and T. Richard. An example of regular limit at the maximal time of the Ricci flow. in preparation.
[23] S.Y. Cheng, P. Li, and S.-T. Yau. On the upper estimate of the heat kernel of complete Riemannian manifold. Amer. J. Math., 103(5):1021-1063, 1981.
[24] B. Chow, P. Lu, and L. Ni. Hamilton's Ricci flow, volume 77 of Graduate Studies in Mathematics. Amer. Math. Soc., 2006.
[25] B. Chow, P. Lu, and B. Yang. A necessary and suffcient condition for Ricci shrinkers to have positive AVR. Proc. Amer. Math. Soc. to appear.
[26] D. De Turck. Deforming metrics in the direction of their Ricci tensors. J. Diff. Geom., 18:157-162, 1983.
[27] J. Enders, R. Muller, and P. M. Topping. On type I singularities in Ricci flow. ArXiv:1005.1624v1, 2010.
[28] M. Feldman, T. Ilmanen, and D. Knopf. Rotationally symmetric shrinking and expanding gradient Kahler-Ricci solitons. J. Diff. Geom., 65:169-209, 2003.
[29] A. Futaki and M.-T. Wang. Constructing Kahler-Ricci solitons from Sasaki-Einstein manifolds. Asian J. Math., 15(1):33-52, 2011.
[30] D. Gromoll and W. Meyer. On complete open manifolds of positive curvature. Ann. of Math., 90(1):75-90, 1969.
[31] H.-L. Gu and X.-P. Zhu. The existence of type II singularities for the Ricci flow on S^{n+1}.
Comm. Anal. Geom., 16(3):467-494, 2008.
[32] R. S. Hamilton. Three manifolds with positive Ricci curvature. J. Diff. Geom., 17:255-306, 1982.
[33] R. S. Hamilton. Four-manifolds with positive curvature operator. J. Diff. Geom., 24:153-179, 1986.
[34] R. S. Hamilton. Eternal solutions to the Ricci flow. J. Diff. Geom., 38:1-11, 1993.
[35] R. S. Hamilton. The Harnack estimate for the Ricci flow. J. Diff. Geom., 37:225-243, 1993.
[36] R. S. Hamilton. The formation of singularities in the Ricci flow. Surveys in Diff. Geom., 2:7-136, 1995.
[37] R. S. Hamilton. Non-singular solutions of the Ricci flow on three-manifolds. Comm. Anal. Geom., 7(4):695-729, 1999.
[38] S.-Y. Hsu. Uniqueness of solutions of Ricci flow on complete noncompact manifolds. ArXiv:0704.3468v4, 2007.
[39] T. Ivey. Ricci solitons on compact three-manifolds. Diff. Geom. Appl., 3:301-307, 1993.
[40] N. Q. Le and N. Sesum. Remarks on curvature behavior at the first singular time of the Ricci flow. ArXiv:1005.1220v2, 2010.
[41] Y.-I. Lee and M.-T. Wang. Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows. J. Diff. Geom., 83:27-42, 2009.
[42] Y.-I. Lee and M.-T. Wang. Hamiltonian stationary cones and self-similar solutions in higher dimension. Trans. Amer. Math. Soc., 362:1491-1503, 2010.
[43] L. Ma and L. Cheng. On the conditions to control curvature tensors of Ricci flow. Ann. Glob. Anal. Geom., 37:403-411, 2010.
[44] L. Ma and X.Z. Dai. Mass under the Ricci flow. Commun. Math. Phys., 274:65-80, 2007.
[45] A. Naber. Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math., 645:125-153, 2010.
[46] L. Ni. Ancient solutions to Kahler-Ricci flow. Math. Res. Lett., 12(5-6):633-653, 2005.
[47] L. Ni and N. Wallach. On a classification of the gradient Ricci solitons. Math. Res. Lett., 15(5):941{955, 2008.
[48] G. Perelman. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159v1, 2002.
[49] G. Perelman. Ricci flow with surgery on three-manifolds. arXiv:math/0303109v1, 2003.
[50] P. Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer-Verlag, 1998.
[51] P. Petersen and W. Wylie. Rigidity of gradient Ricci solitons. Pacific J. Math., 241:329-345, 2009.
[52] P. Petersen and W. Wylie. On the classification of gradient Ricci solitons. Geom. Topol., 14(4):2277-2300, 2010.
[53] S. Pigola, M. Rimoldi, and A. G. Setti. Remarks on non-compact gradient Ricci solitons. Math. Z., 264(3), 2010.
[54] F. Schulze and M. Simon. Expanding solitons with non-negative curvature operator coming out of cones. ArXiv:1008.1408v1, 2010.
[55] H. Seshadri. On the smooth regidity of almost-Einstein manifolds with nonnegative isotropic curvature. ArXiv:0904.0752v1, 2009.
[56] N. Sesum. Limiting behavior of the Ricci flow. ArXiv:math.DG/0402194, 2004.
[57] N. Sesum. Curvature tensor under the Ricci flow. Amer. J. Math., 127:1315-1324, 2005.
[58] W.-X. Shi. Deforming the metric on complete Riemannian manifolds. J. Diff. Geom.,
30:223-301, 1989.
[59] M. Simon. A class of Riemannian manifolds that pinch when evolved by Ricci flow. Manuscripta Math., 101(1):89{114, 2000.
[60] P. D. Smith and D. Yang. Removing point singularities of Riemannian manifolds. Tran. Amer. Math. Soci., 333(1):203-219, 1992.
[61] S.J. Zhang. On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below. Acta Math. Sinica, 27(5):871-882, 2011.
[62] Z. Zhang. Scalar curvature behavior for finite time singularity of Kahler-Ricci flow. Mich. Math. J., 59(2):419-433, 2010.
[63] Z.-H. Zhang. Gradient shrinking Ricci solitons with vanishing Weyl tensor. Pacific J. Math., 242(1):189-200, 2009.
[64] Z.-H. Zhang. On the completeness of gradient Ricci solitons. Proc. Amer. Math. Soc., 137(8):2755-2759, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65935-
dc.description.abstract本論文包含四章以及附錄。
在第一章中,我們從方程和幾何兩方面來探討瑞奇流的特性,並介紹瑞奇流的演變與基本思想。
我們試圖說明本論文的成果與瑞奇流的正則性之關聯。
我們在第二章利用某類旋轉對稱流形來構造一個奇異點發生在無窮遠處的解。
此外還利用佩雷曼的結果來討論遠古解的無塌陷性質。
在第三章中,我們證明在滿足比昂奇不等式的流形上,瑞奇張量滿足施皖雄型態的一階微分估計。
第四章將用來討論瑞奇孤立子的性質以及它們的分類問題。
我們證明當擴張孤立子的曲率遞減階數超過二次時,其無窮遠切錐為歐氏空間。
zh_TW
dc.description.abstractThis thesis consists of four chapters and an appendix.
The first chapter is dedicated to the fundamental ideas of the theory of Ricci flow, which shows how our works are connected to the whole story. In the second chapter, we construct a solution of Ricci flow on a rotationally symmetric manifold such that it remains a complete manifold at the maximal time. We also derive a noncollapsing property for certain ancient solutions near their maximal times. Both of these two results are related to the regularity of limits of solutions. In the third chapter, we show that a first order Shi-type estimate holds for Ricci tensor on manifolds which satisfy the weak Bianchi inequality. The last chapter is concerned with expanding gradient Ricci solitons. There we discuss the classification problem and show that every tangent cone at infinity of an expanding soliton with fast-than-quadratic-decay curvature must be $mathbb{R}^n$.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:15:47Z (GMT). No. of bitstreams: 1
ntu-101-D95221004-1.pdf: 711893 bytes, checksum: a5626eaed3b21829762d6067eb52297c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 i
Resume ii
Abstract iii
Table of Contents iv
1 Introduction 1
 1 Ricci flow: from the analytic point of view . . . . . . . . . . . . . . . . . . . 1
 2 Ricci flow: from the geometric point of view . . . . . . . . . . . . . . . . . . 5
2 Regularity of the limit of solution at the maximal time 9
 1 An example of regular limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 2 Noncollapsing property of certain ancient solutions . . . . . . . . . . . . . . 13
3 Derivative estimates of Ricci curvature 18
 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 2 Global estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
 3 Local estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 4 Backward estimate and its application . . . . . . . . . . . . . . . . . . . . . 25
 5 Further discussions on the Bianchi inequalities . . . . . . . . . . . . . . . . . 27
4 Expanding gradient Ricci solitons 30
 1 Denition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 30
 2 Recent development of expanding solitons . . . . . . . . . . . . . . . . . . . 33
  2.1 Why expanding solitons are important? . . . . . . . . . . . . . . . . . 33
  2.2 Classication problem of expanding solitons . . . . . . . . . . . . . . 35
  2.3 Asymptotic volume ratio of expanding solitons . . . . . . . . . . . . . 36
 3 Topology of expanding solitons with fast curvature decay . . . . . . . . . . . 39
 4 Geometry of expanding solitons with fast curvature decay . . . . . . . . . . . 42
Appendix: A study of injectivity radius on non-compact manifolds 47
 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 2 Non-existence of smooth geodesic loops . . . . . . . . . . . . . . . . . . . . . 48
 3 Non-smooth loops and injectivity radius estimate . . . . . . . . . . . . . . . 50
Bibliography 55
dc.language.isoen
dc.title論瑞奇流的正則性zh_TW
dc.titleOn the regularity of the Ricci flowen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisorGerard Besson(Gerard Besson)
dc.contributor.oralexamcommittee蔡東和(Dong-Ho Tsai),褚孫錦(Sun-Chin Chu),王慕道(Mu-Tao Wang),Zindine Djadli(Zindine Djadli)
dc.subject.keyword瑞奇流,施皖雄估計,瑞奇孤立子,zh_TW
dc.subject.keywordRicci flow,Ricci soliton,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2012-07-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
695.21 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved