Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張時中
dc.contributor.authorYu-Chin Hsuen
dc.contributor.author徐鈺欽zh_TW
dc.date.accessioned2021-06-17T00:15:28Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-04
dc.identifier.citationBenjamini, Y. and Y. Hochberg (1995). 'Controlling the false discovery rate: a practical and powerful approach to multiple testing.' Journal of the Royal Statistical Society. Series B (Methodological): 289-300.
Benjamini, Y. and D. Yekutieli (2001). 'The control of the false discovery rate in multiple testing under dependency.' Annals of statistics: 1165-1188.
Brieman, L., J. Friedman, et al. (1984). 'Classification and Regression Trees.' Monterrey, CA: Wadsworth & Brooks.
Casella, G. and E. I. George (1992). 'Explaining the Gibbs sampler.' American Statistician: 167-174.
Chen, A. and A. Hong (2010). 'Sample-Efficient Regression Trees (SERT) for Semiconductor Yield Loss Analysis.' Semiconductor Manufacturing, IEEE Transactions on 23(3): 358-369.
Chien, C. F., W. C. Wang, et al. (2007). 'Data mining for yield enhancement in semiconductor manufacturing and an empirical study.' Expert Systems with Applications 33(1): 192-198.
de Vries, D. K. and Y. Chandon (2007). 'On the False-Positive Rate of Statistical Equipment Comparisons Based on the Kruskal–Wallis H Statistic.' Semiconductor Manufacturing, IEEE Transactions on 20(3): 286-292.
Fan, C. M., R. S. Guo, et al. (2001). Data mining and fault diagnosis based on wafer acceptance test data and in-line manufacturing data, IEEE.
George, E. I. and R. E. McCulloch (1993). 'Variable selection via Gibbs sampling.' Journal of the American Statistical Association: 881-889.
Kong, G. (2002). Tool commonality analysis for yield enhancement, IEEE.
Langford, R. E., G. Hsu, et al. (2000). The identification and analysis of systematic yield loss, IEEE.
Leachman, R. C. and S. Ding (2011). 'Excursion yield loss and cycle time reduction in semiconductor manufacturing.' Automation Science and Engineering, IEEE Transactions on 8(1): 112-117.
McCray, A. T., J. McNames, et al. (2005). 'Locating disturbances in semiconductor manufacturing with stepwise regression.' Semiconductor Manufacturing, IEEE Transactions on 18(3): 458-468.
Nicholson, M. (2003). System and method for finding an operation/tool combination that causes integrated failure in a semiconductor fabrication facility, Google Patents.
Pierre, E. R. S., E. Tuv, et al. (2008). Spatial patterns in sort wafer maps and identifying fab tool commonalities, IEEE.
Tu, K. K. W., J. C. Lee, et al. (2009). 'A Novel Statistical Method for Automatically Partitioning Tools According to Engineers' Tolerance Control in Process Improvement.' Semiconductor Manufacturing, IEEE Transactions on 22(3): 373-380.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65923-
dc.description.abstract機台共同性分析(Tool Commonality Analysis; TCA)技術的穩健性對於半導體晶圓廠產品良率診斷的有效性有極大的影響。然而,所有現行演算法皆以貪婪搜尋策略為主,卻缺乏診斷機台組合效應的能力。當晶圓良率損失的根本原因是機台組合效應而非一個單機台效應時,以貪婪搜尋為導向的TCA演算法通常會導致高誤判率 (型I誤差) 和高漏判率 (型II誤差)。
隨著半導體元件單位尺寸不斷縮小以及機台總數逐漸變大,晶圓良率損失趨向由特定的機台組合引起,貪婪搜尋導向的TCA演算法所引起的問題變得更加嚴峻。為了有效解決機台組合效應的問題,本論文首先針對每個機台建立二進位的機台健康指標,以判定一個特定機台是否應被納入為影響良率的機台組合中,並提出利用馬可夫鏈蒙地卡羅動態搜索技術的吉氏抽樣 (Gibbs Sampler) 數值方法於所有機台健康指標搜尋空間中,以重複疊代方式求取一個機台的健康指標在固定其他機台健康指標下的條件機率與模擬值。當模擬過程收斂時,統計出發生最頻繁的機台健康指標組合,即可判定影響良率的關鍵機台組合。
本論文開發出以吉氏抽樣數值方法為基礎的TCA演算法,其中影響效能的機台健康指標條件機率分別採用有母數最大概似值與無母數假設檢定所得之p-value來估算。模擬和實際數據驗證結果顯示,以吉氏抽樣數值法為基之TCA演算法對於機台組合效應具有極佳的診斷能力,特別是在異常事件中,良率改變幅度較小、關鍵機台組合的使用率較低、或在機台使用率上具有與關鍵機台組合呈現高度相關的正常機台,吉氏抽樣數值法不僅在正確率上遠優於以貪婪搜尋策略為基之TCA,其運算效率也滿足應用之要求,能將計算複雜度從O(2n)減少到O(n2),其中n是機台的數量。
zh_TW
dc.description.abstractIn semiconductor manufacturing, the soundness of tool commonality analysis (TCA) technique has a high impact on the effectiveness of product yield diagnosis. However, all up-to-date TCA algorithms are based on greedy search strategies, which are naturally poor in identifying combinational root causes. When the root cause of wafer yield loss is tool combination instead of a single tool, the greedy-search-oriented TCA algorithm usually results in both high false and high miss identification rates.
As the feature size of semiconductor devices continuously shrinks down, the problem induced by greedy-search-oriented TCA algorithm becomes severer because the total number of tools is getting large and wafer yield loss is more likely caused by a specific tool combination. To cope with the tool combination problem, a new TCA algorithm based on Gibbs Sampler, a Markov Chain Monte Carlo (MCMC) stochastic search technique, is proposed. In specific, a tool health indicator with binary value is defined for each tool to determine if it should be involved in the tool combination as root cause.
With the Gibbs Sampler, the computation complexity is reduced from O(2n) to about O(n2), where n is the number of tools. Simulation and field data validation results show that the proposed TCA algorithm performs well in identifying the ill tool combination.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:15:28Z (GMT). No. of bitstreams: 1
ntu-101-R99546001-1.pdf: 2052161 bytes, checksum: 4428edde197c80dfcf03a6590e590b61 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iii
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Significance of Yield Diagnosis and Tool Commonality Analysis 1
1.2 Literature Survey 3
1.3 Scope of Research 6
1.4 Thesis Organization 9
Chapter 2 Tool Commonality Analysis (TCA) 10
2.1 Concept of TCA 10
2.2 Suspected Root Cause and Tool 12
2.3 Combinational Root Cause and Combinational Effect 14
2.4 Confounding tools 15
2.5 Non-uniform tool usage and transition probability 16
2.6 Contribution of Gibbs-Sampler-Based TCA 18
Chapter 3 Modeling of TCA and Method for Detecting Combinational Root Cause via Gibbs Sampler 19
3.1 Formulation of TCA Problem 19
3.2 Gibbs-Sampler-Based TCA 21
3.3 Gibbs Sampler Transition Mechanism 23
Chapter 4 Transition Mechanism and Convergence 27
4.1 Problem of Random Variable (T) in Transition Mechanism 28
4.1.1 Transition Mechanism while computing the post. prob. via likelihood 28
4.1.2 Transition Mechanism while computing the post. prob. via non-parametric approach 32
4.2 Convergence of Tool Health indicator ( ) 37
Chapter 5 Simulation and Performance Evaluation 39
5.1 Design of Simulation Cases and Evaluation Metrics 39
5.2 Fab Yield Data Preprocess 43
5.3 Study of Confounding Effect in Case 1 45
5.3.1 Combination of confounding tool and root cause yield the highest significance 45
5.3.2 Root cause yield highest significance 47
5.4 Study of the Effect of Small Proportion of Low-Yield Wafers in Case 2 48
5.5 Robustness Test on Various Shift Size and Unbalance Tool Usage 50
5.6 Evaluation by simulated Fab yield data 52
Chapter 6 Semiconductor Manufacturing Case Study 56
6.1 Real data characteristics and algorithm initial setting 56
6.2 Real data Manipulation Method 58
6.3 Analysis Result of Real data and Manipulated Data 62
6.4 Comparison of GSB-TCA, GSO-TCA and SERT 66
6.4.1 Data Tree Structure and Properties of Case 0 67
6.4.2 Data Tree Structure and Properties of Case 1 83
6.4.3 Data Tree Structure and Properties of Case 2 98
Chapter 7 Conclusions and Future Work 114
References 116
dc.language.isoen
dc.subject半導體製造良率zh_TW
dc.subject機台共同性分析zh_TW
dc.subject機台組合效應zh_TW
dc.subject馬可夫鏈蒙地卡羅zh_TW
dc.subject吉氏抽樣zh_TW
dc.subjectGibbs Sampleren
dc.subjectTool Commonality Analysisen
dc.subjectTool Combinationen
dc.subjectSemiconductor Manufacturing Yield Analysisen
dc.subjectMarkov Chain Monte Carloen
dc.title以吉氏抽樣數值法鑑別影響半導體製造良率的關鍵機台組合zh_TW
dc.titleIdentifying Tool Combinations Critical to Semiconductor Manufacturing Yield with Gibbs Sampleren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范治民,蔡雅蓉,謝叔蓉
dc.subject.keyword半導體製造良率,機台共同性分析,機台組合效應,馬可夫鏈蒙地卡羅,吉氏抽樣,zh_TW
dc.subject.keywordSemiconductor Manufacturing Yield Analysis,Tool Commonality Analysis,Tool Combination,Markov Chain Monte Carlo,Gibbs Sampler,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2012-07-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved