Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65918
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張顏暉(Yuan-Huei Chang) | |
dc.contributor.author | Hung-Sen Kang | en |
dc.contributor.author | 康閎森 | zh_TW |
dc.date.accessioned | 2021-06-17T00:15:20Z | - |
dc.date.available | 2012-07-18 | |
dc.date.copyright | 2012-07-18 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-04 | |
dc.identifier.citation | 參考文獻
[1] Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill. ISBN 0070494398. (2002) [2] Greenwood, Norman N.; Earnshaw, A. Chemistry of the Elements. Oxford: Pergamon. p. 911. ISBN 0-08-022057-6. (1984) [3] W.R.McWhinnieTellurium - Inorganic chemistry Encyclopedia of Inorganic Chemistry Ed. R Bruce King John Wiley & Sons ISBN 978-0-471-93620-6. (1995) (1994) [4] K. W. Bagnall. The Chemistry of Selenium, Tellurium and Polonium. London: Elsevier. pp. 59–60. ISBN 0080188559. (1966) [5] A F Wells, Structural Inorganic Chemistry (5th ed.), Oxford: Clarendon Press, ISBN 0-19-855370-6, (1984) [6] Egon Wiberg; Nils Wiberg; Arnold Frederick Holleman. Inorganic chemistry. Academic Press. pp. 592–593. ISBN 0123526515. (2001) [7] R Stegeman, L Jankovic, H Kim, C Rivero, G Stegeman, K Richardson, P Delfyett, Y Guo, A Schulte, T Cardinal. 'Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica'. Optics Letters 28 (13): 1126–8. doi:10.1364/OL.28.001126. PMID 12879929. (2003) [8] Perez-D'Gregorio R E, Miller R K, Baggs R B. 'Maternal toxicity and teratogenicity of tellurium dioxide in the Wistar rat: relationship to pair-feeding'. Reprod. Toxicol. 2 (1): 55–61. doi:10.1016/S0890-6238(88)80009-1. PMID 2980402. (1988) [9] T Rezanka, K Sigler, Atta-ur-Rahman. “BIOLOGICALLY ACTIVE COMPOUNDS OF SEMI-METALS” Studies in Natural Products Chemistry, Volume 35. Elsevier. p. 905. ISBN 0444531815. (2008) [10] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介”, 國研科技,1,31-36(2004) 80 [11] A. Beck, J G Bednorz, Ch Gerber, C Rossel, and D Widmer, “Reproducible switching effect in thin oxide films for memory applications”, Applied Physics Letters,Vol. 77, No. 1, pp. 139-141, (2000) [12] C Rossel, G I Meijer, D Bre’maud, D Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching”, Journal of Applied Physics, Vol. 90, No.6, pp. 2892-2898, (2001). [13] Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-His Lin, “Resistive Switching Mechanisms of V-Doped SrZrO3 Memeory Films”, IEEE Electron Device Letters, Vol. 27, No. 9, pp. 725-727, (2006). [14] Jae-Wan Park, Kyooho Jung, Min Kyu Yang, Jeon-Kook Kim, and Jong-Wan Park, “Resistive switching characteristics and set-voltage dependence of low-resistance state in sputter-deposited SrZrO3: Cr memory films”, Journal of Applied Physics, 99, 124102,(2006) [15] Chih-Yi Liu, Chun-Chieh Chuang, Jian-Shian Chen, Arthur Wang, Wen-Yueh Jang, Jien-Chen Young, Kuang-Yi Chiu, and Tseung-Yuen Tseng, “Memory effect of sol-gel derived V-doped SrZrO3 thin films”, Thin Solid Films, Vol. 494, pp. 287-290,(2006). [16] R Oligschlaeger, R Waser, R Meyer, S Karthauser, and R Dittmann, “Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films”, Applied Physics Letters, 88, 042901, (2006). [17] S Tsui, A Baikalov, J Cmaidalka, Y Y Sun, Y Q Wang, Y Y Xue, C W Chu, L Chen and A J Jacobson, “Field-induced resistive switching in metal-oxide interfaces”, Applied Physics Letters, Vol. 85, No. 2,pp. 317-319,(2004). [18] Akihiro Odagawa, Tsutomu Kanno, and Hideaki Adachi, “Transient response during resistance switching in Ag/Pr0.7Ca0.3MnO3/Pt thin films”, Journal of Applied Physics, 99, 016101,(2006). [19] Dooho Choi, Dongsoo Lee, Hyunjun Sim, Man Chang, and Hyunsang Hwang, “Reversible resistive switching of SrTiOX thin films for nonvolatile memory applications”, Applied Physics Letters, 88, 082904,(2006). 81 [20] Markus Janousch, G Ingmar Meijer, Urs Staub, Bernard Delley, Siegfried F Karg, and Bjorn P Andreasson, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Charge Memory”, Advanced Materials, Vol. 0000, No. 00, pp. 1-5, (2007). [21] B J Choi, D S Jeong, S K Kim, C Rohde, S Choi, J H Oh, H J Kim, C S Hwang, K Szot, R Waser, B Reichenbergm, and S Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, Journal of Applied Physics, 98. 033715, (2005). [22] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, Jin-Shi Zhao, and Cheol Seong Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films”, Applied Physics Letters, 86, 262907, (2005). [23] Byung Joon Choi, Seol Choi, Kyung Min Kim, Yong Cheol Shin, Cheol Seong Hwang, Sung-Yeon Hwang, Sung-sil Cho, Sanghyun Park, and Suk-Kyoung Hong, “Study on the resistive switching time of TiO2 thin films”, Applied Physics Letters, 89, 012906, (2006). [24] Kyung Min Kim, Byung Joon Choi, Doo Seok Jeong, Cheol Seong Hwang, and Seungwu Han, “Influence of carrier injection on resistive switching of TiO2 thin films with Pt electrodes”, Applied Physics Letters, 89, 162912, (2006). [25] Kyung Min Kim, Byung Joon Choi, Bon Wook Koo, Seol Choi, Doo Seok Jeong, and Cheol Seong Hwang, “Resistive Switching in Pt/Al2O3/TiO2/Ru Stacked Structures”, Electrochemical and Solid-State Letters, Vol. 9, No. 12, pp. G343-G346, (2006). [26] Masayuki FUJIMOTO, Hiroshi KOYAMA, Yasunari HOSOI, Kazuya ISHIHARA, and Shinji KOBAYASHI, “High-Speed Resistive Switching of TiO2/TiN Nano-Crystalline Thin Film”, Japanese Journal of Applied Physics, Vol. 45, No. 11, pp. L310-L312, (2006). [27] Doo Seok Jeong, Herbert Schroeder, and Rainer Waser, “Impedeance spectroscopy of TiO2 thin films showing resistive switching”, Applied Physics Letters, 89, 082909, (2006). [28] Doo Seok Jeong, Herbert Schroeder, and Rainer Waser, “Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt/TiO2/Pt Stack”, Electrochemical and Solid-State Letters, Vol. 10, No. 8, pp. G51-G53, (2007). 82 [29] Herbert Schroeder, and Doo Seok Jeong, “Resistive switching in a Pt/TiO2/Pt thin film stack-a candidate for a non-volatile ReRAM”, Microelectronic Engineering, Vol. 84, pp. 1982-1985, (2007). [30] S Seo, M J Lee, D H Seo, E J Jeoung, D -S Suh, Y S Joung, I K Yoo, I R Hwang, S H Kim, I S Byun, J -S Kim, J S Choi, and B H Park, “Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters, Vol. 85, No. 23, pp. 5655-5657, (2004). [31] Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo, Tai-Yen Peng, and Yeong-Der Yao, “Effect of Oxygen Concentration on Characteristics of NiOX-Based Resistance Random Access Memory”, IEEE Transactions On Magnetics, Vol. 43, No. 2, pp. 939-942, (2007). [32] Yil-Hwan You, Byung-Soo So, Jin-Ha Hwang, Wontae Cho, Sun Sook Lee, Taek-Mo Chung, Chang Gyoun Kim, and Ki-Seok An, “Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition”, Applied Physics Letters, 89, 222105, (2006). [33] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide”, Applied Physics Letters, 89, 103509, (2006). [34] Jae-Wan Park, Jong-Wan Park, Dal-Young Kim, and Jeon-Kook Lee, “Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications”, J. Vac. Sci. Technol. A, Vol. 23, No. 5, pp. 1309-1313, (2005). [35] S Seo, M J Lee, D H Seo, S K Choi, D -S Suh, Y S Joung, I K Yoo, I S Byum, I R Hwang, S H Kim, and B H Park, “Conductivity switching characteristics and reset currents in NiO films”, Applied Physics Letters, 86, 093509, (2005). [36] D C Kim, M J Lee, S E Ahn, S Seo, J C Park, I K Yoo, I G Baek, H J Kim, E K Yim, J E Lee, S O Park, H S Kim, U-In Chung, J T Moon, and B I Ryu, “Improvement of resistive memory switching in NiO using IrO2”, Applied Physics Letters, 88, 232106, (2006). [37] Dong-Wook Kim, Bae Ho Park, Ranju Jung, and Sunae Seo, “Reversible Resistance Switching Behaviors of Pt/NiO/Pt Structures”, Japanese Journal of Applied Physics, Vol. 46, No. 8A, pp. 5205-5207, (2007). 83 [38] M D Leea, C K Lo, T Y Peng, S Y Chen, Y D Yao, “Endurance study of switching characteristics in NiO films”, Journal of Magnetism and Magnetic Materials, Vol. 310, pp. e1030-e1031, (2007). [39] D C Kim, S Seo, S E Ahn, D –S Suh, M J Lee, B –H Park, I K Yoo, I G Baek, H -J Kim, E K Yim, J E Lee, S O Park, H S Kim, U -In Chung, J T Moon, and B I Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films”, Applied Physics Letters, 88, 202102, (2006). [40] S Seo, M J Lee, D C Kim, S E Ahm, B –H Park, Y S Kim, I K Yoo, I S Byun, I R Hwang, S H Kim, J -S Kim, J S Choi, J H Lee, S H Jeon, S H Hong, and B H Park, “Electrode dependence of resistance switching in polycrystalline NiO films”, Applied Physics Letters, 87, 263507, (2005). [41] Min Gyu Kim, Sun Man Kim, Eun Jip Choi, Seung Eon Moon, Jonghyurk Park, Hyoung Chan Kim, Bae Ho Park, Myoung Jae Lee, Sunae Seo, David H. Seo, Seung Eun Ahn, and In Kyeong Yoo, “Study of Transport and Dielectric of Resistive Memory State in NiO Thin Film”, Japan Journal of Applied Physics, Vol. 44, No. 42, pp. L1301-L1303, (2005). [42] Myoung-Jae Lee, Sunae Seo, Dong-Chirl Kim, Seung-Eon Ahn, David H. Seo, In-Kyeong Yoo, In-Gyu Baek, Dong-Sik Kim, Ik-Su Byun, Soo-Hong Kim, In-Rok Hwang, Jin-Soo Kim, Sang-Ho Jeon, amd Bae Ho Park, “A Nonvolatile Memories”, Advanced Materials, Vol. 19, pp. 73-76, (2007). [43] K -C Min, M Kim, Y -H You, S S Lee, Y K Lee, T –M Chung, C G Kim, J –H Hwang, K –S An, N –S Lee, amd Y Kim, “NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena”, Surface & Coatings Technology, Vol. 201, pp. 9252-9255, (2007). [44] Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Tzyh-Cheang Lee, Fu-Liang Yang, Chenming Hu, and Tseung-Yuen Tseng, “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices”, IEEE Electron Device Letters, Vol. 28, No. 5, pp. 366-368, (2007). [45] X Wu, P Zhou, J Li, L Y Chen, H B Lv, Y Y Lin, and T A Tang, “Reproduceible unipolar resistance switching in stoichiometric ZrO2 films”, Applied Physics Letters, 90, 183507, (2007). 84 [46] Seunghyup Lee, Wan-Gee Kim, Shi-Woo Rhee, and Kijung Yong, “Resistance Switching Behaviors of Hafnium Oxide Films Grown by MOCVD for Nonvolatile Memory Application”, Journal of The Electrochemical Society, Vol. 155, No. 2, pp. H92-H96, (2008). [47] H B Lv, M Yin, X F Fu, Y L Song, L Tang, P Zhao, C H Zhao, T A Tang, B A Chen, and Y Y Lin, “Resistive Memory Switching of CuXO Films for a Nonvolatile Memory Application”, IEEE Electron Device Letters, Vol. 29, No. 4, pp. 309-311, (2008). [48] I G Baek, M S Lee, S Seo, M J Lee, D H Seo, D S Suh, J C Park, S O Park, H S Kim, I K Yoo, U I Chung, and J T Moon, “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, IEDM Tech. Dig., (2004). [49] L V Azároff,; R Kaplow, N Kato, R J Weiss, A J C Wilson, R A Young. X-ray diffraction. McGraw-Hill. 1974. [50] V Holy, et al. “X-ray reflection from rough layered systems”, Phys. Rev. B. 47, 15896 (1993). [51] S E Dann, Reactions and Characterization of SOLIDS. Royal Society of Chemistry, USA (2002). [52] D A Skoog,; F J Holler,; S R Crouch, Principles of Instrumental Analysis. Sixth Edition, Thomson Brooks/Cole, USA (2007). [53] Hyoun Woo Kima, Han Gil Nab, Ju Chan YangbChanghyun Jin, Hyunsu Kim, and Chongmu Lee, “Enhancement of the emission from TeO2 nanorods by encapsulation with ZnO” Cryst. Res. Technol. 46, No. 10, 1065 – 1070 (2011) / DOI 10.1002/crat.201100224 [54] “Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides” Chemical Engineering Journal Volume 170, Issue 1, 15 May 2011, Pages 326–332 [55] Sodium tellurite neutron diffraction experiment 24 - 26th February 2005 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65918 | - |
dc.description.abstract | 我們嘗試使用二氧化碲做為電阻式記憶體材料,先利用高溫爐在p型矽基板上生長二氧化碲的奈米結構;並利用掃描式電子顯微鏡作奈米結構上的分析,以及利用X光繞射和光致發光作結構和成分上的分析。
製作兩種不同材料的電阻式記憶體設備,銀和鋁,分別做為反映傳導層,最後利用蒸鍍機鍍銀鋁作為電極當作反應層,完成了以p型矽基板和反應傳導層夾住二氧化碲奈米結構的電阻式記憶體設備。 實驗結果顯示,鋁作為金屬氧化反應層的樣本跟用銀作為反應層的樣本比較下有較好的電壓電流特性。為了改良設備上的缺陷,我們利用熱退火和增加二氧化碲奈米結構的生長時間,有效改善了矽-二氧化碲-鋁的電阻式記憶體設備,並且使其具有比先前更好的特性。 目前學術上有關二氧化碲作為電阻式記憶體材料的研究相關論文非常少,電阻式記憶體也算是一個較新的固態設備,只有少數的相關實驗數據參考。研究結果顯示,穩定性和持久性都是電阻式記憶體未來發展的基本挑戰。 | zh_TW |
dc.description.abstract | In this thesis, a resistive random-access memory was fabricated by using the tellurium dioxide. The nanostructure of the tellurium dioxide was grown on the p-type silicon substrate in a high-temperature furnace. Scanning electron microscopy, Photoluminescence and X-ray diffraction analysis were carried out to investigate the morphology and the crystalline structure of the grown tellurium dioxide, respectively.
Two types of resistive random-access memory devices were fabricated by employing different materials, silver and aluminum, as the conducting layer. In this study, aluminum was coated as the electrodes by the thermal evaporation method. The resistive random-access memory device was constructed by sandwiching the tellurium layer between the p-type silicon substrate and the conducting layer. The measured current-voltage characteristics of the device with the aluminum conducting layer performed better than that with the silver one. To improve the device performance, annealing and extending the growth time of TeO2 nanostructure were attempted in this study, and the results show a positive outcome. Resistive random-access memory is a relatively new subject for solid state devices. Only a handful of experimental data are available to date. The results presented in this thesis indicate that the stability and persistence of the resistive random-access memory devices will be the fundamental challenges for its future development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:15:20Z (GMT). No. of bitstreams: 1 ntu-101-R99245001-1.pdf: 3906074 bytes, checksum: f942e2a4a527ae1e21fc8bcd7a823992 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目 錄
口試委員審定書 Ⅰ 誌謝 Ⅱ 英文摘要 Ⅲ 中文摘要 Ⅳ 目錄 Ⅴ 圖目錄 Ⅷ 表目錄 ⅩⅠ 第一章 緒論 .................................................................................................................. 1 1.1 前言........................................................................................................................ 1 1.2 研究概要目的與動機............................................................................................ 2 第二章 基本原理介紹 .................................................................................................. 5 2.1 材料介紹................................................................................................................. 5 2.1.1 二氧化碲奈米結構........................................................................................ 5 2.2 各種次世代非揮發性記憶體原理介紹和比較..................................................... 7 2.2.1 鐵電隨機記憶體(FeRAM) ............................................................................ 7 2.2.2 磁阻隨機記憶體(MRAM) ............................................................................ 8 2.2.3 相變化隨機記憶體(PRAM).......................................................................... 9 2.2.4 電阻式記憶體(RRAM) ............................................................................... 10 2.3 電阻式記憶體(RRAM)相關研究 ........................................................................ 13 2.3.1 鋯酸鍶(SrZrO3) ............................................................................................ 13 2.3.2 鐠鈣錳氧(Pr0.7Ca0.3MnO3, PCMO) ............................................................. 19 Ⅴ 2.3.3 二氧化鈦(TiO2) ................................................................................................. 20 2.3.4 氧化鎳(NiO) ................................................................................................ 22 2.4 實驗儀器原理....................................................................................................... 27 2.4.1 高溫爐原理介紹.......................................................................................... 27 2.4.2 掃描式電子顯微鏡(SEM)原理介紹 ........................................................... 29 2.4.3 X 光衍射儀(XRD)原理介紹........................................................................ 33 2.4.4 光致發光(PL)測量原理介紹 ...................................................................... 38 2.4.5 蒸鍍機原理介紹.......................................................................................... 40 2.4.6 探針式電流電壓測量系統原理介紹.......................................................... 42 第三章 實驗流程 ........................................................................................................ 43 3.1 二氧化碲奈米結構的製作流程........................................................................... 44 3.1.1 矽基板的蝕刻與清洗.................................................................................. 44 3.1.2 二氧化碲奈米結構的生長.......................................................................... 44 3.2 RRAM 記憶體的製作流程 ................................................................................... 46 3.2.1 反應層(Ag,Al)的蒸鍍 ................................................................................. 46 3.2.2 電極的製作.................................................................................................. 46 第四章 實驗結果與討論 ............................................................................................ 47 4.1 二氧化碲奈米的結構........................................................................................... 47 4.1.1 結構測量以及成分分析.............................................................................. 47 4.2 RRAM 電阻式記憶體設備測量結果 ................................................................... 53 4.2.1 Si/TeO2/Ag RRAM 之特性 .......................................................................... 53 4.2.2 Si/TeO2/Ag 之穩定性 ................................................................................... 55 4.2.3 Si/TeO2/Al RRAM 之特性 ........................................................................... 59 Ⅵ 4.2.4 Si/TeO2/Al RRAM 之穩定性 ....................................................................... 61 4.3 Si/TeO2/Ag 與Si/TeO2/Al 之RRAM 性質的比較與分析 .................................. 65 4.4 Si/TeO2/Al 電阻式記憶體的改良 ......................................................................... 68 第五章 結論................................................................................................................ 77 參考文獻...................................................................................................................... 79 Ⅶ | |
dc.language.iso | zh-TW | |
dc.title | 二氧化碲電阻式記憶體之研究 | zh_TW |
dc.title | A Study on TeO2 Nanostructure RRAM Device | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 梁啟德(Chi-Te Liang) | |
dc.contributor.oralexamcommittee | 陳永芳(Yang-Fang Chen),石明豐(Ming-Feng Shih) | |
dc.subject.keyword | 非揮發性記憶體,電阻式記憶體,二氧化碲, | zh_TW |
dc.subject.keyword | non-volatile memory,resistive random-access memory,tellurium dioxide, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理所 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 應用物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-101-1.pdf Restricted Access | 3.81 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.