請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65917
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 俞何興(Ho-Shing Yu) | |
dc.contributor.author | Kan-Hsi Hsiung | en |
dc.contributor.author | 熊衎昕 | zh_TW |
dc.date.accessioned | 2021-06-17T00:15:18Z | - |
dc.date.available | 2017-07-16 | |
dc.date.copyright | 2012-07-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-04 | |
dc.identifier.citation | Allen, P. A. (2008). From landscapes into geological history. [10.1038/nature06586]. Nature, 451(7176), 274-276.
Barckhausen, U., Roeser, H. A. (2004). Seafloor spreading anomalies in the South China Sea revisited. Geophysical Monograph: American Geophysical Union Baztan, J., Berne, S., Olivet, J. L., Rabineau, M., Aslanian, D., Gaudin, M., . . . Canals, M. (2005). Axial incision: The key to understand submarine canyon evolution (in the western Gulf of Lion). Marine and Petroleum Geology, 22(6–7), 805-826. doi: 10.1016/j.marpetgeo.2005.03.011 Boillot, G. (1981). Geology of the continental margins. London and New York: Longman. 128pp. Borch, C. C. (1969). Submarine canyons of southeastern New Guinea: Seismic and bathymetric evidence for their modes of origin. Deep Sea Research and Oceanographic Abstracts, 16(4), 323-328. doi: 10.1016/0011-7471(69)90001-1 Bowin, C., Lu, R., Lee, C., Schouten, H. (1978). Plate convergence and accretion in Taiwan-Luzon region. American Association of Petroleum Geologists Bulletin, 62(9), 1645-1672. Byrne, T., Chan, Y. C., Rau, R. J., Lu, C. Y., Lee, Y. H., Wang, Y. J. (2011). The Arc–Continent Collision in Taiwan. Fronters in Earth Sciences. Springer Berlin Heidelberg. 213-245. Carter, L., Carter, R. M., Nelson, C. S., Fulthorpe, C. S., Neil, H. L. (1990). Evolution of Pliocene to Recent abyssal sediment waves on Bounty Channel levees, New Zealand. Marine Geology, 95(2), 97-109. doi: 10.1016/0025-3227(90)90043-j Carter, R. M. (1988). The nature and evolution of deep-sea channel systems. Basin Research, 1(1), 41-54. doi: 10.1111/j.1365-2117.1988.tb00004.x Chiang, C., Yu, H. (2011). Sedimentary erosive processes and sediment dispersal in Kaoping submarine canyon. Science China Earth Sciences, 54(2), 259-271. doi: 10.1007/s11430-010-4076-y Chuang, C. Y., Yu, H. S. (2002). MorPhology and Canyon Forming Processes of Upper Reach of the Penghu Submarine Canyon off Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 13(1), 91-108. Covault, J. A., Shelef, E., Traer, M., Hubbard, S. M., Romans, B. W., Fildani, A. (2012). Deep-Water Channel Run-Out Length: Insights from Seafloor Geomorphology. Journal of Sedimentary Research, 82(1), 21-36. doi: 10.2110/jsr.2012.2 Covey, M. (1984). Lithofacies Analysis and Basin Reconstruction, Plio-Pleistocene Western Taiwan Fredeep. Petroleum Geology of Taiwan(20), 53-83. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., . . . Lin, J. C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. [10.1038/nature02150]. Nature, 426(6967), 648-651. doi: http://www.nature.com/nature/journal/v426/n6967/suppinfo/nature02150_S1.html Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M.-L., . . . Stark, C. P. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736. doi: 10.1130/g20639.1 Daly, R. A. (1936). Origin of submarine canyons. American Journal of Science, 16(186), 401-420. Damuth, J. E. (1979). Migrating sediment waves created by turbidity currents in the northern South China Basin. Geology, 7(11), 520-523. doi: 10.1130/0091-7613(1979)7<520:mswcbt>2.0.co;2 Davies, H., Honza, E., Tiffin, D., Lock, J., Okuda, Y., Keene, J., . . . Kisimoto, K. (1987). Regional setting and structure of the western Solomon Sea. Geo-Marine Letters, 7(3), 153-160. doi: 10.1007/bf02238045 Davies, H., Keene, J., Hashimoto, K., Joshima, M., Stuart, J., Tiffin, D. (1986). Bathymetry and Canyons of the western Solomon Sea. Geo-Marine Letters, 6(4), 181-191. doi: 10.1007/bf02239579 Farre, J. A., McGregor, B.A., Ryan, W.B.F., Robb J.M. (1983). Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution. Society for Sedimentary Geology. 33, 25-39. doi: 10.2110/pec.83.06.0025 Fildani, A., Hubbard, S. M., Covault, J. A., Maier, K. L., Romans, B. W., Traer, M., Rowland, J. C. (In press). Erosion at inception of deep-sea channels. Marine and Petroleum Geology. doi: 10.1016/j.marpetgeo.2012.03.006 Fuh, S. C., Liu, C. S., Wu, M. S. (1997) Migration of canyon system from Pliocene to Pleistocene in area between Hsyning Structure and Kaoping Slope and its application for hydrocarbon exploration. Petroleum Geology of Taiwan, 31, 43-60. Galewsky, J., Silver, E. A. (1997). Tectonic controls on facies transitions in an oblique collision: The western Solomon Sea, Papua New Guinea. Geological Society of America Bulletin, 109(10), 1266-1278. doi: 10.1130/0016-7606(1997)109<1266:tcofti>2.3.co;2 Gong, C., Wang, Y., Peng, X., Li, W., Qiu, Y., Xu, S. (2012). Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, 32(1), 95-109. doi: 10.1016/j.marpetgeo.2011.12.005 Harris, P. T., Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285(1–4), 69-86. doi: 10.1016/j.margeo.2011.05.008 Hayes, D. E., Lewis, S. D. (1984). A Geophysical Study of the Manila Trench, Luzon, Philippines 1. Crustal Structure, Gravity, and Regional Tectonic Evolution. Journal of Geophysical Research, 89(B11), 9171-9195. doi: 10.1029/JB089iB11p09171 Honza, E., Miyazaki, T., Lock, J. (1989). Subduction erosion and accretion in the Solomon Sea region. Tectonophysics, 160(1–4), 49-62. doi: 10.1016/0040-1951(89)90383-1 Hsiung, K. H., Yu, H. S. (2011). Morpho-sedimentary evidence for a canyon–channel–trench interconnection along the Taiwan–Luzon plate margin, South China Sea. Geo-Marine Letters, 31(4), 215-226. doi: 10.1007/s00367-010-0226-7 Hsu, S. K., Sibuet, J. C. (2004). Continent–Ocean Transition of the Northern South China Sea and off Southwestern Taiwan. Marine Geophysical Research, 25(1), 1-4. doi: 10.1007/s11001-005-0729-1 Hsu, S. K., Yeh, Y. C., Doo, W. B., Tsai, C. H. (2004). New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and their Tectonic Implications. Marine Geophysical Research, 25(1), 29-44. doi: 10.1007/s11001-005-0731-7 Hu, J., Kawamura, H., Hong, H., Qi, Y. (2000). A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion. Journal of Oceanography, 56(6), 607-624. doi: 10.1023/a:1011117531252 Hubscher, C., Spieβ, V., Breitzke, M., Weber, M. E. (1997). The youngest channel-levee system of the Bengal Fan: results from digital sediment echosounder data. Marine Geology, 141(1–4), 125-145. doi: 10.1016/s0025-3227(97)00066-2 Jarrard, R. D. (1986). Relations among subduction parameters. Reviews of Geophysics, 24(2), 217-284. doi: 10.1029/RG024i002p00217 Johnson, D. D., Beaumont, C. (1995). Kinematic model of orogen evolution, surface processes and the development of clastic foreland basin stratigraphy. Society for Sedimentary Geology, Spec Publ 52, 3-24. Karig, D. E., Sharman, G. F. (1975). Subduction and Accretion in Trenches. Geological Society of America Bulletin, 86(3), 377-389. doi: 10.1130/0016-7606(1975)86<377:saait>2.0.co;2 Kneller, B. (2003). The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20(6–8), 901-910. doi: 10.1016/j.marpetgeo.2003.03.001 Krause, D. C., White, W. C., Piper, D. J. W., Heezen, B. C. (1970). Turbidity Currents and Cable Breaks in the Western New Britain Trench. Geological Society of America Bulletin, 81(7), 2153-2160. doi: 10.1130/0016-7606(1970)81[2153:tcacbi]2.0.co;2 Ku, C. Y., Hsu, S. K. (2009). Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics, 466(3–4), 229-240. doi: 10.1016/j.tecto.2007.11.012 Lallemand, S. E., Tsien, H. H. (1997). An introduction to active collision in Taiwan. Tectonophysics, 274(1–3), 1-4. doi: 10.1016/s0040-1951(96)00294-6 Lee, T., Tang, C. H., Ting, J. S., Hsu, Y. Y. (1993). equence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petroleum Geology of Taiwan(28), 119-158. Lewis, S. D., Hayes, D. E. (1984). A Geophysical Study of the Manila Trench, Luzon, Philippines 2. Fore Arc Basin Structural and Stratigraphic Evolution. Journal of Geophysical Research, 89(B11), 9196-9214. doi: 10.1029/JB089iB11p09196 Li, C. F., Zhou, Z., Li, J., Hao, H., Geng, J. (2007). Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Marine Geophysical Research, 28(1), 59-79. doi: 10.1007/s11001-007-9014-9 Lin, A. T., Watts, A. B., Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. doi: 10.1046/j.1365-2117.2003.00215.x Lin, M. T., Tsai, Y. B. (1981). Seismotectonics in Taiwan-Luzon area. Bulletin of the Institute of Earth Sciences(1), 51-82. Liu, C. S., Huang, I. L., Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137(3–4), 305-319. doi: 10.1016/s0025-3227(96)00093-x Liu, J. T., Huh, C. A., You, C. F. (2009). Fate of Terrestrial Substances in the Gaoping (Kaoping) Shelf/Slope and in the Gaoping Submarine Canyon off SW Taiwan. Journal of Marine Systems, 76(4), 367-368. doi: 10.1016/j.jmarsys.2008.08.005 Liu, J. T., Lin, H. L. (2004). Sediment dynamics in a submarine canyon: a case of river–sea interaction. Marine Geology, 207(1–4), 55-81. doi: 10.1016/j.margeo.2004.03.015 Lu, C. Y., Hsu, K. J. (1992). Tectonic evolution of the Taiwan mountain belt. Petroleum Geology of Taiwan, 27, 21-46. Macdonald, D. I. M. (1993). Controls on Sedimentation at Convergent Plate-Margins Tectonic Controls and Signatures in Sedimentary Successions (Vol. 20, pp. 225-257): Blackwell Publishing Ltd. MARGINS Science Plans, 2004. http://margins.wustl.edu/Publications/SciencePlans/MARGINSSciencePlans.html McGregor, B. A. (1981). Ancestral head of Wilmington Canyon. Geology, 9(6), 254-257. doi: 10.1130/0091-7613(1981)9<254:ahowc>2.0.co;2 Menard, H. W. (1955). Deep-sea channels, topography, and sedimentation. American Association of Petroleum Geologists Bulletin, 39, 236-255. Milliman, J. D., Syvitski, J. P. M. (1992). Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology, 100(5), 525-544. Milsom, J., Masson, D., Nichols, G., Sikumbang, N., Dwiyanto, B., Parson, L., Kallagher, H. (1992). The Manokwari Trough and the western end of the New Guinea Trench. Tectonics, 11(1), 145-153. doi: 10.1029/91tc01257 Moore, G. F., Curray, J. R., Emmel, F. J. (1982). Sedimentation in the Sunda Trench and forearc region. Geological Society, London, Special Publications, 10(1), 245-258. doi: 10.1144/gsl.sp.1982.010.01.16 Moore, G. F., Shipley, T. H., Stoffa, P. L., Karig, D. E., Taira, A., Kuramoto, S., . . . Suyehiro, K. (1990). Structure of the Nankai Trough Accretionary Zone From Multichannel Seismic Reflection Data. Journal of Geophysical Research, 95(B6), 8753-8765. doi: 10.1029/JB095iB06p08753 Moore, G. F., Taira, A., Klaus, A., Becker, L., Boeckel, B., Cragg, B. A., . . . Wilson, M. (2001). New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochemistry, Geophysics, Geosystems, 2(10). doi: 10.1029/2001gc000166 Mountney, N. P. (1997). Dynamic equilibrium within ocean trenches: A useful analytical tool? Geology, 25(2), 151-154. doi: 10.1130/0091-7613(1997)025<0151:dewota>2.3.co;2 Nakajima, T., Satoh, M., Okamura, Y. (1998). Channel-levee complexes, terminal deep-sea fan and sediment wave fields associated with the Toyama Deep-Sea channel system in the Japan Sea. Marine Geology, 147(1–4), 25-41. doi: 10.1016/s0025-3227(97)00137-0 Nittrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L. (ed.) (2007) Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. Vol. 37. Blackwell Publishing: IAS Spec. 549pp. doi: 10.1002/9781444304398 Normark, W. R., Piper, D. J. W., Posamentier, H., Pirmez, C., Migeon, S. (2002). Variability in form and growth of sediment waves on turbidite channel levees. Marine Geology, 192(1–3), 23-58. doi: 10.1016/s0025-3227(02)00548-0 Posamentier, H. W. (2003). Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico. Marine and Petroleum Geology, 20(6–8), 677-690. doi: 10.1016/j.marpetgeo.2003.01.002 Rangin, C., Stephan, J. F., Blanchet, R., Baladad, D., Bouysee, P., Min Pen, C., . . . Tardy, M. (1988). Seabeam survey at the southern end of the Manila trench. Transition between subduction and collision processes, offshore Mindoro Island, Philippines. Tectonophysics, 146(1–4), 261-278. doi: 10.1016/0040-1951(88)90095-9 Shaw, C. L. (1996). Stratigraphic Correlation and Isopach maps of the western Taiwan Basin. Terrestrial, Atmospheric and Oceanic Sciences, 7(3), 333-360. Shaw, P. T., Chao, S. Y. (1994). Surface circulation in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 41(11–12), 1663-1683. doi: 10.1016/0967-0637(94)90067-1 Shepard, F. P. (1972). Submarine canyons. Earth-Science Reviews, 8(1), 1-12. doi: 10.1016/0012-8252(72)90032-3 Shepard, F. P. (1981). Submarine canyons; multiple causes and long-time persistence. American Association of Petroleum Geologists Bulletin, 65(6), 1062-1077. Shepard, F. P., Emery, K. O. (1973). Congo Submarine Canyon and Fan Valley. American Association of Petroleum Geologists Bulletin, 57(9), 1679-1691. Shepard, F. P., Dill, R. F. (1966). Submarine Canyons and Other Sea Valleys Chicago: Rand McNally. 381pp. Silver, E. A., Abbott, L. D., Kirchoff-Stein, K. S., Reed, D. L., Bernstein-Taylor, B., Hilyard, D. (1991). Collision propagation in Papua New Guinea and the Solomon Sea. Tectonics, 10(5), 863-874. doi: 10.1029/91tc00867 Simoes, M., Avouac, J. P. (2006). Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills. Journal of Geophysical Research, 111(B10), B10401. doi: 10.1029/2005jb004209 Somme, T. O., Martinsen, O. J., Thurmond, J. B. (2009). Reconstructing morphological and depositional characteristics in subsurface sedimentary systems: An example from the Maastrichtian–Danian Ormen Lange system, More Basin, Norwegian Sea. American Association of Petroleum Geologists Bulletin, 93(10), 1347-1377. doi: 10.1306/06010909038 Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 1012. doi: 10.1029/2001rg000108 Sun, S. C., Liu, C. S. (1993). Muddiapirs and submarine channel deposits in offshore Kaohsiung-Rengchun, south-west Taiwan. Petroleum Geology of Taiwan(28), 1-14. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China(4), 67-89. Suppe, J. (1988). Tectonics of Arc-continent Collision on Both Sides of the South China Sea:Taiwan and Mindoro. Acta Geologica Taiwanica, 26, 1-18. Taylor, B., Hayes, D. E. (1983). Origin and history of the South China Sea basin. Washington D.C.: American Geophysical Union. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1–4), 57-76. doi: 10.1016/0040-1951(90)90188-e Tiffin, D., Davies, H., Honza, E., Lock, J., Okuda, Y. (1987). The New Britain trench and 149° embayment, Western Solomon Sea. Geo-Marine Letters, 7(3), 135-142. doi: 10.1007/bf02238043 Twichell, D. C., Roberts, D. G. (1982). Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons. Geology, 10(8), 408-412. doi: 10.1130/0091-7613(1982)10<408:mdados>2.0.co;2 Underwood, M. B., Karig, D. E. (1980). Role of submarine canyons in trench and trench-slope sedimentation. Geology, 8(9), 432-436. doi: 10.1130/0091-7613(1980)8<432:roscit>2.0.co;2 Wessel, P., Smith, W. H. F. (1991). The GMT-System Version 2.0, Technical Reference and Cookbook. Scripps Institution of Oceanography,University of California, San Diego Whitmore, G. P., Crook, K. A. W., Johnson, D. P. (1999). Sedimentation in a complex convergent margin: the Papua New Guinea collision zone of the western Solomon Sea. Marine Geology, 157(1–2), 19-45. doi: 10.1016/s0025-3227(98)00132-7 Wynn, R. B., Masson, D. G., Stow, D. A. V., Weaver, P. P. E. (2000). Turbidity current sediment waves on the submarine slopes of the western Canary Islands. Marine Geology, 163(1–4), 185-198. doi: 10.1016/s0025-3227(99)00101-2 Wynn, R. B., Piper, D. J. W., Gee, M. J. R. (2002). Generation and migration of coarse-grained sediment waves in turbidity current channels and channel–lobe transition zones. Marine Geology, 192(1–3), 59-78. doi: 10.1016/s0025-3227(02)00549-2 Yu, H. S., Chang, E. (2009). Links among slope morphology, canyon types and tectonics on passive and active margins in the northernmost South China Sea. Journal of Earth Science, 20(1), 77-84. doi: 10.1007/s12583-009-0008-1 Yu, H. S., Chang, J. F. (2002). The Penghu submarine Canyon off southwestern Taiwan: Morphology and origin. Terrestrial, Atmospheric and Oceanic Sciences, 13(4), 547-562. Yu, H. S., Chiang, C. S., Shen, S. M. (2009). Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems, 76(4), 369-382. doi: 10.1016/j.jmarsys.2007.07.010 Yu, H. S., Chou, Y. W. (2001). Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333(1–2), 277-291. doi: 10.1016/s0040-1951(00)00279-1 Yu, H. S., Hong, E. (2006). Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences, 27(6), 922-932. doi: 10.1016/j.jseaes.2005.09.007 Yu, H. S., Huang, Z. Y. (2006). Intraslope basin, seismic facies and sedimentary processes in the Kaoping Slope, offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 659-677. Yu, H. S., Huang, Z. Y. (2009). Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea. Tectonophysics, 466(3–4), 241-254. doi: 10.1016/j.tecto.2007.11.007 王海榮, 王英民, 邱燕, 彭學超, 李文成. (2007). 南海北部大陸邊緣深水環境的沈積物波. 自然科學進展, 17(9). 周蒂 (2002). 臺西南盆地和北港隆起的中生界及其沈積環境. 熱帶海洋學報, 21(2), 50-57. 莊惠如 (2006). 臺灣西南海域泥貫入體分佈與構造活動之關係. 碩士, 臺灣大學. 湯守立, 翁榮南, 徐永耀, 楊昭男. (1999). 臺灣西南海域臺南盆地的演化初論. 臺灣石油地質, 33, 125-149. 劉玲雯 (2009). 高屏海底峽谷的曲流特徵及其在沉積物傳輸的意義. 碩士, 臺灣大學. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65917 | - |
dc.description.abstract | 本論文利用臺灣-呂宋島間深海區域的水深與震測剖面資料,首先辨識出沿著臺灣-呂宋島聚合帶發育的海底沈積形貌特徵,包括南海棚坡 (被動大陸邊緣) 與高屏棚坡 (活動大陸邊緣),兩陸坡之間的澎湖海底峽谷、澎湖深海水道、及北馬尼拉海溝。此三段南北走向的槽狀線性溝渠,分佈在鄰近臺灣-呂宋島西側南海海盆東緣最深處,可以相互連接排列,形成一條直接的沈積物輸送管道。從鄰近臺灣造山帶及中國大陸邊緣侵蝕風化而來的沈積物,會經由此沈積物散佈路徑,最終傳輸到馬尼拉海溝堆積。澎湖深海水道位於樞鈕位置,北邊為臺灣弧陸碰撞帶,南邊為馬尼拉海溝隱沒帶。南海陸坡上的福爾摩沙峽谷主要承接來自中國大陸的陸源物質,高屏棚坡上的高屏峽谷所傳輸的陸源物質主要來自臺灣,而位於軸部的澎湖峽谷可接受來自兩側陸坡的淺海沈積物,此三條峽谷皆可成為主要沈積物散佈管道,主要的造山帶沈積物透過軸部峽谷之縱向傳輸,並可經由兩側峽谷及小型溝渠側向補充沈積物,匯集到南海海盆。此沈積物散佈管道在由北到南反應由碰撞到隱沒的區域大地構造背景,同時受到構造與沈積作用的相互影響下,其沈積形貌特徵逐漸改變:水深由淺到深,槽狀溝渠橫剖面由窄到寬,縱剖面坡度由陡到緩,沈積作用由侵蝕到以堆積為主。本文比較南海最北部與新幾內亞-所羅門海板塊聚合帶胡安灣的沈積物散佈系統兩者之沈積物傳輸路徑,凸顯沈積物散佈系統的架構。兩者有相似的兩側陸坡聚合海床形貌,呈現一個三角形且開口向海溝處傾斜的聚合型海盆,軸部峽谷-水道沿著聚合帶發育,陸坡上發育的海底峽谷及溝渠水道朝軸部峽谷匯流,形成區域性且完整的樹枝狀沈積物散佈系統。此系統特徵為軸部縱向傳輸及沈積物側向補充,為活動大陸邊緣從源到匯研究提供一理想之類比範例,從造山帶源頭到海溝匯集處距離僅不到三百公里即有完整系統,可類比至其他地區聚合帶研究從源到匯的相關議題。澎湖峽谷、澎湖深海水道和北馬尼拉海溝為散佈系統主軸,其輸送管道位置及走向主要受到大地構造的影響,而系統形貌受控於構造及沈積作用。沈積物散佈系統的發育,始於形成數條南北走向位於臺灣造山帶西南側深水區的海底峽谷,距今約1.6Ma;澎湖深海水道自東側地勢抬升擠壓後形成,年代大約少於1Ma;距今約0.4Ma古澎湖峽谷約形成在今日澎湖峽谷東北方,位置及走向確立後,整體沈積物散佈系統大致成形。馬尼拉海溝約在15Ma開始形成並持續隱沒作用,並逐漸向西移動到臺灣造山帶南邊。至今澎湖海底峽谷和澎湖深海水道相接,且往南和馬尼拉海溝北端相接,形成完整之沈積物散佈系統。 | zh_TW |
dc.description.abstract | Examining bathymetric and seismic reflection data from deep-sea region between Taiwan and Luzon, this study identified prominent morpho-sedimentary features that mainly include the South China Sea Shelf/Slope (passive margin) juxtaposed by the Kaoping Shelf/Slope (active margin) intersected by Penghu Canyon and the deep-sea Penghu Channel and northern Manila Trench farther down-slope. These three negative relief troughs of canyon, channel and trench can be interconnected and aligned in a nearly N-S direction, forming a sediment pathway along the western Taiwan-Luzon margin in the deepest east rim of the South China Sea basin. Sediments derived from adjacent Taiwan orogen and Chinese continental margin are longitudinally transported via this sediment dispersal route and are finally deposited in the northern Manila Trench. The deep-sea Penghu Channel is pivotal of the sediment dispersal system because it links the Penghu Canyon in Taiwan arc-continental collision zone to the Manila Trench in the subduction zone west of Luzon, forming a continuous regional sediment dispersal system. The Formosa Canyon on the South China Sea Slope serves mainly as a conduit for sediments derived from mainland China, feeding sediments into the Penghu Canyon, terrestrial sediments derived from southern Taiwan are mainly transported by Kaoping Canyon to the deep-sea Penghu Channel and the axial Penghu Canyon can receive shallow marine sediments from both flanked slopes, serving as a marine transport route. Most orogenic sediments derived from Taiwan are transported longitudinally by axial canyon and down-slope deep-sea channel, and other sediments are supplied laterally by canyons and gullies from flanking slopes, joining into the axial marine transport route and finally debouching to the South China Sea Basin. The morpho-sedimentary features change their morphology and sedimentary processes progressively from collision in the north to the subduction in the south due to effects of tectonics and sedimentation. Shallow canyon evolves to deep oceanic trench following increase in water depth. Narrow V-shaped canyon changes to wide asymmetrical cross-sectional morphology of the trench. The downslope sediment transport system changes from dominant erosion in the canyon to deposition in the deep-water channel and trench. This study emphasizes the significance of the sediment transport routes of the collision zone in the northernmost South China Sea by comparing that of Huon Gulf in Papua New Guinea-Solomon Sea collision zone. Both sediment dispersal systems reveal remarkable similarities in morphology of the collisional and juxtaposed slopes, forming a triangle and tilted trench-ward collisional marine basin. This study combines the axial canyon-channel developing along the convergent slopes, and canyons and gullies on the slopes merging laterally into the axial canyon-channel to form a regional sediment dispersal system with a dendritic pattern. This system is characterized by axial transport and lateral supply of sediments. This study demonstrates a sediment dispersal system in a short distance less than 300 km from the Taiwan orogen to the northern Manila Trench and provides an ideal and analog example for studying sediment dispersal system in the perspective of source-to-sink studies of other active continental margin. The Penghu Canyon, deep-sea Penghu Channel and northern Manila Trench form the axis of sediment dispersal system. Overall, tectonics controls the orientation and location of the sediment dispersal system and structure and sedimentary processes control the morphology and route of this system. About 1.6 Ma several N-S oriented submarine canyons developed in the offshore deep-water region southwest of Taiwan and initiated the early phase of development of the sediment dispersal system. Farther south, the deep-sea Penghu Channel has developed west of the uplifted bathymetric ridge produced by westward compression along the convergent zone around 1 Ma. Approximately 0.4 Ma ago, the paleo-Penghu Canyon developed with a N-S course northeast of the present-day Penghu Canyon, forming the proto-system of sediment dispersal route. The Manila Trench began to form about 15 Ma and progressively migrated westward to the present position south of the Taiwan orogen. At present, the modern Penghu Canyon links to the deep-sea Penghu Channel southward and debouches to the northern Manila Trench, resulting in a complete sediment dispersal system along the Taiwan-Luzon convergent margin. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:15:18Z (GMT). No. of bitstreams: 1 ntu-101-D96241008-1.pdf: 6519469 bytes, checksum: a776db93a309308d7533dd1cc9050d70 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目 錄
中文摘要…………………………………………………………………………………….... i 英文摘要…………………………………………………………………………...………... iii 目錄…………………………………………….………………………..………...……..…vi 圖目錄…………………………………………………………………..………...……….…vii 表目錄……………………………………………………………………..………...…...….ix 第一章 緒論……………………………………………………………..……….…...……. 1 1.1研究區域與地質背景…………………………………………..…………..........…..6 1.2研究目的與前人研究…………………………………………. ..………................14 1.3名詞彙整………………………………………………………..……….....……….17 第二章 資料與方法……………………………………………………..………... ……... 23 2.1水深資料………...……………………………………………..………...……… 23 2.2反射震測資料..……………………………………………………. ……...……….23 第三章 結果與討論………………………………………………………………...……...27 3.1沈積物散佈系統的沈積形貌特徵與縱向傳輸………….………….. ……...……27 3.2沈積物散佈系統架構及其與巴布亞新幾內亞胡安灣系統之比較. ……...……..40 3.3澎湖海底峽谷、澎湖深海水道、馬尼拉海溝之震測特徵……………...………48 3.4沈積物波與沈積物散佈系統及其與從源到匯之關係…………………...……….66 3.5沈積物散佈系統的形成與發育及其與構造/沈積作用之關係…………...………71 第四章 結論………………………………………………………..……………...……….75 參考文獻……………………………………………………………….…………...………..77 圖 目 錄 圖1.1.1、研究區域海底地形圖……….……………………………………………………..3 圖1.1.2、地表形貌與沈積物傳輸途徑示意圖……………………………………………...4 圖1.1.3、研究區域海底地形與地質背景……………………………………………….…..5 圖1.1.4、臺灣西南部台南盆地演化橫剖面圖………………………………. ……………10 圖1.1.5、臺灣西部前陸盆地橫剖面示意圖…………………………………. ……………11 圖1.1.6、前陸盆地沈積物傳輸模式示意圖.……………………………………………….12 圖1.2.1、馬尼拉海溝北端前人研究示意圖………………...……….……………………..16 圖1.3.1、海溝端點形貌變化示意圖……………………………….……. ………………...21 圖1.3.2、活動與被動式大陸邊緣海底峽谷發育示意圖…………..……………………….22 圖2.1、台灣南部到呂宋島間研究區域水深圖……………………………………………..25 圖2.2、十二條水深與震測剖面橫跨峽谷、深海水道、海溝位置圖…………………….26 圖3.1.1、馬尼拉海溝整體之縱剖面圖…………………………………………………….33 圖3.1.2、澎湖海底峽谷、澎湖深海水道及馬尼拉海溝北段縱剖面圖………………….34 圖3.1.3、澎湖深海水道沈積形貌特徵圖…………………...………………………….….35 圖3.1.4、橫跨峽谷、深海水道、海溝之連續水深剖面..…………………………….…..36 圖3.1.5、高屏、澎湖、福爾摩沙海底峽谷之縱剖面圖..……………………………..….37 圖3.2.1、南海北部與所羅門海西部海底地形圖………………………………………….44 圖3.2.2、南海北部與所羅門海西部之海底地形立體圖………………………………….45 圖3.2.3、南海北部與所羅門海西部沈積物傳輸系統圖………………. …………………46 圖3.2.4、南海北部與所羅門海西部沈積物傳輸途徑模式示意圖…..…………………….47 圖3.3.1、反射震測剖面Profile 1 (ACT-111) 橫跨澎湖海底峽谷..…..…………………..54 圖3.3.2、反射震測剖面Profile 2 (ACT-110) 橫跨澎湖海底峽谷…………………….….55 圖3.3.3、反射震測剖面Profile 3 (ACT-108) 橫跨澎湖海底峽谷………………………..56 圖3.3.4、反射震測剖面Profile 4 (ACT-105) 橫跨澎湖深海水道.…...……………….….57 圖3.3.5、反射震測剖面Profile 5 (ACT-099a) 橫跨澎湖深海水道..….…………………..58 圖3.3.6、反射震測剖面Profile 6 (ACT-103) 橫跨澎湖深海水道……..………………….59 圖3.3.7、反射震測剖面Profile 7 (OR1-689-04) 橫跨澎湖深海水道.…………………….60 圖3.3.8、反射震測剖面Profile 8 (OR1-689-03) 橫跨馬尼拉海溝..………………………61 圖3.3.9、反射震測剖面Profile 9 (OR1-693-01) 橫跨馬尼拉海溝..………………………62 圖3.3.10、反射震測剖面Profile 10 (OR1-693-03) 橫跨馬尼拉海溝..…………………...63 圖3.3.11、反射震測剖面Profile 11 (OR1-693-04) 橫跨馬尼拉海溝..……………………64 圖3.3.12、反射震測剖面Profile 12 (OR1-693-06) 橫跨馬尼拉海溝..…………………...65 圖3.4.1、台灣-呂宋島聚合帶沈積物散佈系統途徑圖…………………………………….70 圖3.5.1、沈積物散佈系統與與相應之構造和沈積作用圖……………………………….74 表 目 錄 表1、被動大陸邊緣與活動大陸邊緣沈積形貌特徵比較……………………………….....13 表2、南海棚坡區(被動)與高屏棚坡區(活動)之大陸邊緣特徵比較……………………....38 表3、澎湖峽谷、澎湖深海水道、馬尼拉海溝之海床形貌特徵比較………..……………...39 表4、台灣-南海與巴布亞新幾內亞-所羅門海地質特徵比較表…..………………………43 表5、震測剖面橫跨峽谷、深海水道、海溝之形貌與量化參考數值…..…………………..53 表6、水深剖面之沈積形貌與構造形貌列表……………………………………………….69 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣-呂宋島聚合帶沈積物散佈系統及其從源到匯之意義 | zh_TW |
dc.title | Sediment dispersal system along the Taiwan-Luzon convergent
margin in the perspective of source-to-sink | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉家瑄(Char-Shine Liu),陳汝勤(Ju-Chin Chen),蘇志杰(Chih-Chieh Su),林慧玲(Hui-Ling Lin),洪崇勝(Chorng-Shern Horng) | |
dc.subject.keyword | 臺灣-呂宋島聚合帶,馬尼拉海溝,澎湖深海水道,沈積物散佈系統,沈積物 縱向傳輸,從源到匯, | zh_TW |
dc.subject.keyword | Taiwan-Luzon convergent margin,Manila Trench,deep-sea Penghu Channel,sediment dispersal system,longitudinal sediment transport,source-to-sink, | en |
dc.relation.page | 88 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。