Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65912
標題: 使用多變數線性預測之人類動作辨識的時間模型
An Efficient Temporal Model for Action Recognition Using Multivariate Linear Prediction
作者: Chin-An Lin
林晉安
指導教授: 鄭士康(Shyh-Kang Jeng)
共同指導教授: 林彥宇(Yen-Yu Lin)
關鍵字: 人類動作辨識,多變數線性預測,時間模型,骨架,時間序列,影片描述,
action recognition,multivariate linear prediction,temporal model,skeleton,time series,bag-of-word,video description,
出版年 : 2012
學位: 碩士
摘要: 對於辨識長時間的動作,時間之間的高階依賴關係非常有用,但是利用高階依賴關係,將造成常用的圖形時間模型像是HMM或者是CRF的模型計算複雜度很大程度的提升。本論文提出使用多變數線性預測,來利用時間上高階依賴關係。我們時間模型的計算複雜度比較低。除此之外,相較於圖形時間模型,我們的演算法不用定義與人工標記狀態,並且在有一定程度雜訊的Bag-of-Word 表示法上可以改善辨識率,而這個表示法在前人的研究中得到顯著的成果。我們的方法也擁有很好的應用能力,為了顯示這個能力,我們不僅在視訊資料上像是KTH和UCF資料庫實驗,同時也在骨架資料上像是MSR、Kinect資料庫實驗。在大多數情況,我們得到相較於世界上最先進的系統更好的結果。
To recognize temporally extended actions, it is useful to introduce high-order temporal dependence into the recognition task. However, this will highly increase the computational complexity, when the commonly used graphical models such as HMM and CRF are employed. In this thesis, multivariate linear prediction is proposed to exploit high-order temporal dependence with lower computational complexity. In addition, our method makes no effort on defining and manually labeling states and can improve bag-of-word representations, which may contain considerable noise but has shown excellent performance in previous work. To show the applicability of the proposed method, we experiment not only on video datasets including KTH and UCF but on skeleton datasets such as MSR 3D action and UCF Kinect. In most of them, our method gets superior performance than the state-of-the-art methods.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65912
全文授權: 有償授權
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.85 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved