請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65909
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林金全 | |
dc.contributor.author | En-Lan Hu | en |
dc.contributor.author | 胡恩蘭 | zh_TW |
dc.date.accessioned | 2021-06-17T00:15:04Z | - |
dc.date.available | 2014-07-27 | |
dc.date.copyright | 2012-07-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-05 | |
dc.identifier.citation | [1] M. A. A. and E. W. Morley, Phil. Mag. Ser., 1887, 5, vol.24, 449.
[2] H. Rubens and H. Hollnagel, Phil. Mag. Ser., 1910, 6, 761. [3] H. Rubens and R. W. Wood, Phil. Mag. Ser., 1911, 6, vol.21, 249. [4] M. L. Forman, W. H. Steel and G. A. Vanasse, J. Opt. Soc. Am., 1966, 56, 59-&. [5] J. W. Cooley and J. W. Tukey, Mathematics of Computation, 1965, 19, 297-&. [6] M. L. Forman, J. Opt. Soc. Am., 1966, 56, 978-&. [7] P. R. Griffiths and d. H. J. A., Fourier Transform Infrared Spectrometry, 2007. [8] P. Fellgett, Journal De Physique Et Le Radium, 1958, 19, 187-191. [9] P. Jacquinot, J. Opt. Soc. Am., 1954, 44, 761-765. [10] J. Connes and P. Connes, J. Opt. Soc. Am., 1966, 56, 896-&. [11] P. R. Griffith and J. A. de Haseth, in Fourier Transform Infrared Spectroscopy, 1986. [12] http://www.ericweisstein.com/research/thesis/node37.html [13] Bretzlaff, R. S., Bahder, T. B. Revue De Physique Appliquee, 1986, 21, 833 [14] M. Woodward, Probability and Information Theory; Pergamon Press: New York, 1955. [15] Griffiths, P. R. Transform techniques in chemistry, Plenum Press: New York, 1978 [16] Sakurai, H.; Kato, S. Journal of Molecular Structure (Theochem) 1999,461, 145, [17] Simon W. North, David A. Blank, J. Daniel Gezelter, Cheryl A. Longfellow, and Yuan T. Lee, J. Chem. Phys., 1995, 102, 4447-4460 [18] Diau, E. W.-G.; Kötting, C.; Zewail, A. H. ChemPhysChem 2001, 2, 273 [19] J.H. Butler, M. Battle, M.L. Bender, S.A. Montzka, A.D. Clarke, E.S. Saltzman, C.M. Sucher, J.P. Severinghaus, J.W. Elkins, Nature 399, 1999, 749 [20] Arunan, E. J. Phys. Chem A 1997, 101, 4838 [21] Person, M. D.; Kash, P. W.; Butler, L. J., J. Phys. Chem., 1992, 96, 2021 [22] Walter Gordy, The Journal of Chemical Physics, 1946, 14, 560 [23] N. Sheppa, Trans. Faraday Soc., 1949,45, 693-697 [24] Nagata, S.; Yamabe, T.; Fukui, K. J. Phys. Chem., 1975, 79, 2335 [25] Takashi Naito, Osamu Ohashi, Ichiro Yamaguchi, J. Mol. Spec., 1977, 68, 32-40 [26] H.S. Randhawa, W. Walter, Claus O. Méese, J. Mol. Stru., 1977, 31, 187-192 [27] R. Fausto, L.A.E.Batista De Carvalho, J.J.C. Teixeira-Dias, J. Mol. Stru., 1990, 207,67-83 [28] Milan Remkoa, Klaus Roman Liedl, et al., J. Mol. Stru., 1997, 418, 179-187 [29] Shinzi Kato, Yasuyuki Kawahara, et al., J. Am. Chem. Soc., 1996, 118, 1262-1267 [30] David Delaere, Greet Raspoet, et al., J. Phys. Chem. A, 1999, 103, 171-177 [31] D. Allen Clabo, Jr., Hamilton D. Dickson, et al., J. Mol. Model. 2000, 6, 341-348 [32] Rosana M. Romano, Anthony J. Downs, et al., J. Phys. Chem. A 2002, 106, 7235-7244 [33] LU Aimei, KE Ming, LIU Ruozhuang, et al., Chinese J. Chem., 2009, 27, 227-234 [34] Tsai, M. T.; Liu, Y. T.; Liu, C. Y.; Tsai, P. Y.; Lin, K. C., Chemical Physics, 2010, 376, 1 [35] Liu,Y. T.; Tsai, M. T.; Liu, C. Y.; Tsai, P. Y.; Lin, K. C.; Shih, Y. H.; Chang, A. H. H., J. Phys. Chem. A, 2010, 114, 7275 [36] Liu, C. Y.; Tsai, M. T.; Tsai, P. Y.; Liu, Y. T.; Chang, A. H. H.; Lin, K. C., ChemPhysChem, 2011, 12 , 206 [37] McQuarrie, D. A. Statistical thermodynamics; University Science Book: Mill Valley, CA, 1973 [38] Ferraro, J. R.; Basile, L. J. Fourier transform infrared spectroscopy: applications to chemical systems; Academic Press: New York, 1978. [39] McQuarrie, D. A.; Simon, J. D. Physical chemistry: a molecular approach; University Science Books: Sausalito, Calif., 1997. [40] Steinfeld, J. I. Molecules and radiation : an introduction to modern molecular spectroscopy, 2nd ed.; Dover Publications: Mineola, N.Y., 2005. [41] Wayne, R. P. Principles and applications of photochemistry; Oxford University Press: Oxford [England] ; New York, 1988. [42] Barltrop, J. A.; Coyle, J. D. Principles of photochemistry; Wiley: Chichester [Eng.] ; New York, 1978. [43] McQuarrie, D. A. Statistical thermodynamics; University Science Books: Mill Valley, CA, 1973. [44] Gasser, R. P. H.; Richards, W. G. An introduction to statistical thermodynamics; World Scientific: Singapore ; River Edge, N.J., 1995. [45] McQuarrie, D. A.; Simon, J. D. Molecular thermodynamics; University Science Books: Sausalito, Calif., 1999. [46] Engel, T.; Reid, P. Thermodynamics, statistical thermodynamics, and kinetics; Pearson Benjamin Cummings: San Francisco, 2006. [47] Banwell, C. N. Fundamentals of molecular spectroscopy; McGraw-Hill: London, 1972. [48] Bernath, P. F. Spectra of atoms and molecules, 2nd ed.; Oxford University Press: Oxford ; New York, 2005. [49] Herzberg, G. Molecular spectra and molecular structure, 2nd ed.; R.E. Krieger Pub. Co.: Malabar, Fla., 1989. [50] R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. G. Hynes, M.E. Jenkin, M.J. Rossi, and J. Troe, Atmos. Chem. Phys. 2006, 6, 3625–4055 [51] M.M. Maricq, personal communication (1999) to Max-Planck-Institut für Chemie, Mainz, [52] V. Khamaganov, R. Karunanandan, A. Rodriguez, and J.N. Crowley, Phys. Chem. Chem. Phys. 2007, 9, 4098-4113 [53] Joseph R. Lalowicz, Principles of Fluorescence Spectoscopy, Kluwer Academic/Plenum Publishers, New York [54] Ogilvie, J. F.; Cheah, S. L.; Lee, Y. P.; Sauer, S. P. A. Theoretical Chemistry Accounts, 2002, 108, 85 [55] http://www.cfa.harvard.edu/hitran/vibrational.html [56] Klebsch, W., Yamada, K., Winnewisser, G. Z. Nuturforsch., A: Phys., Phys. Chem., Kosmophys, 1983, 38A, 157 [57] Hunt, N.; Foster, S. C.; Johns, J. W. C.; McKellar, A. R. W. J. Mol Spectrosc., 1985, 111, 42 [58] Guelachvili, G. Opt. Commun., 1979, 30, 361 [59] Klebsch, W., Yamada, K., Winnewisser, G. J. Mol. Spectrosc., 1983, 99, 419 [60] Vinckier, C., and Debruyn, W., J. Phys. Chem., 1979, 83, 2057 [61] Alvarez, R.A., and Moore, C.B., J. Phys. Chem., 1994 98, 174 [62] Su, H.; Mao, W., Kong, F. Chemical Physics Letters, 2000, 322, 21 [63] Hancock, G.; Haverd, V. Chemical Physics Letters, 2003, 372, 288 [64] Ingo W. May and E. L. Pace, SpectrochimiAcac ta, 1968, 24A, 1605-1615 [65] C. Witiing, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, J. Chem. Phys., 1985, 83, 5581 [66] P. Pechukas and J. C. Light, J. Chem. Phys., 1965, 42, 2608 [67] P. Pechukas, C. Rankin, and J. C. Light, J. Chem. Phys., 1966, 44, 794 [68] R. D. Levine and J. L. Kinsey, in Atomic-Molecular Collision Theory, 1979 [69] I-Chung Lu, Shih-Huang Lee, Yuan T. Lee, and Xueming Yang, J. Chem. Phys., 2006, 124, 024324 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65909 | - |
dc.description.abstract | 本論文使用時間解析傅立葉轉換紅外光光譜儀,偵測硫代醋酸(thioacetic acid,CH3COSH)分子於單光子248nm能量之下光解產生一氧化碳、亞甲基、羰基硫、甲基硫醇及甲烷等產物。吾人在1850至2200 cm-1中紅外光範圍偵測到一氧化碳及羰基硫(ν(C=O),ν3)之基頻放光訊號,並且標定產物一氧化碳(1≦v≦3,J≦35)之振動轉動光譜譜線。藉由分析光解產物時間解析之振動及轉動分布及內能分配,我們可得到一氧化碳分子平均轉動能量為2.04±0.05 kcal/mol且平均振動能量為6.72±0.29 kcal/mol。此外在2400至3300 cm-1範圍亦觀察到甲基硫醇(ν1、ν2和ν3)、甲烷之伸縮振動態(ν3)及硫化氫之對稱(ν1)及非對稱伸縮(ν3)振動態之放光訊號,但由於硫化氫放光較弱,實驗中所觀察到之圖譜訊號主要由甲烷及甲基硫醇組成。實驗結果顯示以氬氣作為焠熄氣體具有促進硫代醋酸分子經由內轉移(internal conversion,IC)路徑而分解並增加其光分解產物訊號強度的功效。吾人亦藉由理論計算方法了解分子光解的途徑,其結果顯示主要有三種路徑可產生穩定分子產物。(1)硫代醋酸分子經由三中心過渡態分解為一氧化碳及甲基硫醇。(2)由C-S單鍵同向形式(s-syn form)轉為C-S單鍵反向形式(s-anti form)經四中心過渡態再分解為羰基硫和甲烷分子。(3)硫代醋酸分子分解生成硫化氫和乙烯酮,乙烯酮再經由二次斷鍵形成一氧化碳與亞甲基光解碎片。另外吾人藉由加入氧氣與乙烯酮二次分解碎片亞甲基(CH2)進行反應,觀察到二氧化碳、氫氧自由基(OH)及甲醛(H2C=O)等產物,由實驗數據計算出二氧化碳生成速率為1.21(±0.11) × 10-12 cm3 molecule-1 s-1。藉由觀察硫代醋酸分子在氣體狀態下的光分解研究,有助於人們對此類型氧族取代醋酸分子(CH3C(O)XH, X=O,S,Se,Te)有更進一步的了解。 | zh_TW |
dc.description.abstract | Photodissociation dynamics of thioacetic acid at 248nm is studied by detecting photofragments with step-scan time-resolved Fourier-transform infrared emission spectroscopy. We can observe CO and OCS fundamental vibrational emission spectra in the mid-infrared range from 1850 cm-1 to 2200 cm-1. CH3SH, CH4, and H2S are also detected in the range of 2400 - 3300 cm-1; however, we proposed the signals are mainly contributed by CH3SH and CH4, due to the poor emission intensity of H2S. Information of internal energy distribution in photofragments can be obtained via spectral analysis of experimental data. Assignments of the CO spectra indicate that vibrational level is populated up to ν=3 and rotational level J up to J=35. In this study, the CO fragments are directly confirmed by high resolution rovibrational spectral observation. On the other hand, the CH2 product can only be indirectly confirmed by the reaction with O2 to form CO2. We found that the addition of Ar or O2 quenching gas enhance the collision-induced internal conversion process in the photodissociation of CH3COSH. In previous theoretical work, there are three predominant dissociation channels. The first pathway leads to the products of CO and CH3SH through a three-membered ring intermediate. The second pathway leads to OCS and CH4 products. The third pathway yields ketene and H2S, and ketene decomposes further into CO and CH2. The photodissociation study of thioacetic acid in gas phase allows us to gain further understanding of chalcogen substituted carboxylic acid. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:15:04Z (GMT). No. of bitstreams: 1 ntu-101-R99223160-1.pdf: 4591708 bytes, checksum: 0e4c532d80e57df6deef1641c205fc57 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 III
Abstract IV 圖目錄 VIII 第一章 傅立葉轉換紅外光光譜儀簡介 1 第一節 傅立葉轉換光譜之歷史沿革 1 第二節 傅立葉轉換紅外光光譜之優勢 3 第三節 傳統紅外光光譜儀與傅立葉紅外光光譜儀之比較 5 第二章 傅立葉轉換光譜原理 6 第一節 麥克森干涉儀(Michelson interferometer) 6 第二節 干涉圖譜與光譜圖之間的轉換與處理 9 第三節 取樣方式(Undersampling) 16 第四節 相位效應(Phase effect) 18 第五節 時域解析光譜(Time-resolved spectrum) 20 第三章 分子光解系統 24 第一節 羰基(carbonyl group)系統 24 第二節 硫代醋酸(CH3COSH,thioacetic acid)文獻回顧 26 第四章 實驗方法與系統架設 30 第一節 實驗樣品 30 第二節 雷射光解系統 32 第三節 反應腔體 33 第四節 訊號偵測與時間控制系統 35 第五節 系統校正及對光步驟 37 第六節 光譜的校正 39 第五章 實驗結果與數據分析 42 第一節 紅外光放光光譜原理及振動與轉動能量計算 42 一、雙原子分子之振動及轉動能階計算 42 二、躍遷選擇率(Selection rule) 43 三、計算相對佈居數 44 四、計算振動及轉動溫度與能量 46 第二節 紫外-可見光光譜及螢光光譜之測量 48 一、利用測量紫外-可見光光譜得到硫代醋酸之吸收截面積 48 二、利用雷射誘導螢光光譜得到分子激發態的生命期 51 第三節 光分解產物-一氧化碳(CO) 54 一、標定一氧化碳光譜圖譜線 55 二、觀測一氧化碳分子譜線隨時間變化之情形 57 三、一氧化碳分子振動與轉動佈居數 58 四、計算一氧化碳分子振動與轉動溫度及能量 60 五、光解雷射能量與訊號強度之依存性 64 六、焠熄氣體壓力與訊號強度之依存性 65 第四節 光解產物-羰基硫(OCS) 66 一、羰基硫分子的振動模式 67 二、羰基硫分子的譜線 68 第五節 光解碎片-亞甲基(CH2) 70 一、亞甲基與氧氣反應所生成之一氧化碳產物 70 二、亞甲基與氧氣反應所生成之二氧化碳產物 72 三、亞甲基與氧氣反應所生成之位於3300至3800 cm-1之產物 76 四、亞甲基與氧氣反應之文獻討論 78 第六節 2400-3300cm-1產生之訊號 79 一、光解雷射能量與訊號強度之依存性 80 二、焠熄氣體壓力與訊號強度之依存性 81 三、2400-3300cm-1之高解析度圖譜 83 第六章 討論 85 第一節 理論光解反應路徑 86 第二節 結論 91 文獻來源: 92 | |
dc.language.iso | zh-TW | |
dc.title | 利用時域解析傅氏紅外光譜儀研究硫代醋酸之光解反應:以氬氣碰撞活化分子內轉移路徑產生一氧化碳、羰基硫、甲基硫醇及甲烷等產物 | zh_TW |
dc.title | Photodissociation of Thioacetic Acid Using Time-resolved Fourier-transform Infrared Spectroscopy:Carbon Monoxide, Carbonyl Sulfide, Methyl Mercaptan, and Methane Elimination via Argon Collision-Induced Internal Conversion Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張秀華,陸維作 | |
dc.subject.keyword | 硫代醋酸,光分解,傅立葉轉換紅外光光譜儀,分子動態學, | zh_TW |
dc.subject.keyword | thioacetic acid,photodissociation,FTIR,molecular dynamics, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-05 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。