請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65907完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡蔭和 | |
| dc.contributor.author | Hui-Ching Chang | en |
| dc.contributor.author | 張惠晴 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:15:02Z | - |
| dc.date.available | 2015-07-18 | |
| dc.date.copyright | 2012-07-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-05 | |
| dc.identifier.citation | 1. Wuster, W. & Harvey, A. L. (1996) Reviews of venomous snake systematics in Toxicon, Toxicon 34, 397-398.
2. Fry, B. G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S. F.,Vidal, N., Poelmann, R. E. & Norman, J. A. (2008) Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes(Caenophidia), Mol Cell Proteomics 7, 215-246. 3. Aird, S. D. (2002) Ophidian envenomation strategies and the role of purines,Toxicon 40, 335-393. 4. Gutierrez, J. M., Lomonte, B., Leon, G., Rucavado, A., Chaves, F. & Angulo, Y.(2007) Trends in snakebite envenomation therapy: scientific, technological and public health considerations, Curr Pharm Design 13, 2935-2950. 5. Gold, B. S., Dart, R. C. & Barish, R. A. (2002) Bites of venomous snakes, N Engl J Med 347, 347-356. 6. Patterson, L. & Swallow, S. (1991) Sea snake envenomation, Med J Australia 155, 850-850. 7. Gold, B. S. & Wingert, W. A. (1994) Snake venom poisoning in the United States: a review of therapeutic practice, South Med J 87, 579-589. 8. Chippaux, J. P., Williams, V. & White, J. (1991) Snake venom variability: methods of study, results and interpretation, Toxicon 29, 1279-1303. 9. Daltry, J. C., Wuster, W. & Thorpe, R. S. (1996) Diet and snake venom evolution, Nature 379, 537-540. 10. Sasa, M. (1999) Can diet explain intraspecific venom variation? Reply, Toxicon 37, 259-260. 11. Daltry, J. C., Ponnudurai, G., Shin, C. K., Tan, N. H., Thorpe, R. S. & Wuster, W. (1996) Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma), Toxicon 34, 67-79. 12. Tsai, I. H., Chen, Y. H., Wang, Y. M., Liau, M. Y. & Lu, P. J. (2001) Differential expression and geographic variation of the venom phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus, Arch Biochem Biophys 387, 257-264. 13. Tsai, I. H., Tsai, H. Y., Saha, A. & Gomes, A. (2007) Sequences, geographic variations and molecular phylogeny of venom phospholipases and threefinger toxins of eastern India Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2, FEBS J 274, 512-525. 14. Tsai, I. H., Wang, Y. M., Chen, Y. H. & Tu, A. T. (2003) Geographic variations, cloning, and functional analyses of the venom acidic phospholipases A2 of Crotalus viridis viridis, Arch Biochem Biophys 411, 289-296. 15. Budnik, L. T. & Mukhopadhyay, A. K. (2002) Lysophosphatidic acid and its role in reproduction, Biol Reprod 66, 859-865. 16. Kini, R. M. & Evans, H. J. (1997) Phospholipases A2-a complex multifunctional protein puzzle. In Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism (Kini, R. M. ed), Wiley, London, 1-28. 17. Yoshizumi, K., Liu, S. Y., Miyata, T., Saita, S., Ohno, M., Iwanaga, S. & Kihara, H. (1990) Purification and amino acid sequence of basic protein I, a lysine-49 phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu snake), Toxicon 28, 43-54. 18. Kuchler, K., Gmachl, M., Sippl, M. J. & Kreil, G. (1989) Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes, Eur J Biochem 184, 249-254. 19. Scott, D. L., Otwinowski, Z., Gelb, M. H. & Sigler, P. B. (1990) Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue, Science 250, 1563-1566. 20. McIntosh, J. M., Ghomashchi, F., Gelb, M. H., Dooley, D. J., Stoehr, S. J., Giordani, A. B., Naisbitt, S. R. & Olivera, B. M. (1995) Conodipine-M, a novel phospholipase A2 isolated from the venom of the marine snail Conus magus, J Biol Chem 270, 3518-3526. 21. Schaloske, R. H. & Dennis, E. A. (2006) The phospholipase A2 superfamily and its group numbering system, Bba-Mol Cell Biol L 1761, 1246-1259. 22. Kini, R. M. (2005) Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms, Toxicon 45, 1147-1161. 23. Markland, F. S. (1998) Snake venoms and the hemostatic system, Toxicon 36, 1749-1800. 24. Rigoni, M., Schiavo, G., Weston, A. E., Caccin, P., Allegrini, F., Pennuto, M., Valtorta, F., Montecucco, C. & Rossetto, O. (2004) Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles, J Cell Sci 117, 3561-3570. 25. Gutierrez, J. M. & Ownby, C. L. (2003) Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity, Toxicon 42, 915-931. 26. Tsai, S. H., Chen, Y. C., Chen, L., Wang, Y. M. & Tsai, I. H. (2007) Binding of a venom Lys-49 phospholipase A2 to LPS and suppression of its effects on mouse macrophages, Toxicon 50, 914-922. 27. Kuch, U., Gumprecht, A. & Melaun, C. (2007) A new species of Temple Pitviper (Tropidolaemus Wagler, 1830) from Sulawesi, Indonesia (Squamata : Viperidae :Crotalinae), Zootaxa, 1-20. Vogel, G., David, P., Lutz, M., Van Rooijen, J. & Vidal, N. (2007) Revision of the Tropidolaemus wagleri-complex (Serpentes : Viperidae : Crotalinae). I. Definition of included taxa and redescription of Tropidolaemus wagleri (Boie, 1827), Zootaxa, 1-40. 29. Tan, N. H. & Tan, C. S. (1989) The enzymatic-activities and lethal toxins of Trimeresurus wagleri (Speckled Pit Viper) Venom, Toxicon 27, 349-357. 30. Schmidt, J. J. & Weinstein, S. A. (1995) Structure-function studies of waglerin I, a lethal peptide from the venom of wagler pit viper, Trimeresurus wagleri, Toxicon 33, 1043-1049. 31. Tsai, M. C., Hsieh, W. H., Smith, L. A. & Lee, C. Y. (1995) Effects of waglerin-I on neuromuscular transmission of mouse nerve-muscle preparations, Toxicon 33, 363-371. 32. Weinstein, S. A., Schmidt, J. J., Bernheimer, A. W. & Smith, L. A. (1991) Characterization and amino acid sequences of two lethal peptides isolated from venom of waglers pit viper, Trimeresurus wagleri, Toxicon 29, 227-236. 33. Chijiwa, T., Hamai, S., Tsubouchi, S., Ogawa, T., Deshimaru, M., Oda-Ueda, N., Hattori, S., Kihara, H., Tsunasawa, S. & Ohno, M. (2003) Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2, J Mol Evol 57, 546-554. 34. Tsai, I. H. (1997) Phospholipases A2 of Asian snake venoms, J Toxicol-Toxin Rev. 16, 79-113. 35. Wang, Y. M., Liew, Y. F., Chang, K. Y. & Tsai, I. H. (1999) Purification and characterization of the venom phospholipases A2 from Asian monotypic crotalinae snakes, J Nat Toxins 8, 331-340. 36. McGinnis, S. & Madden, T. L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools, Nucleic Acids Res 32, W20-W25. 37. Dell, A., Reason, A. J., Khoo, K. H., Panico, M., Mcdowell, R. A. & Morris, H. R. (1994) Mass spectrometry of carbohydrate-containing biopolymers, Methods Enzymol 230, 108-132. 38. Chen, H. S., Chen, J. M., Lin, C. W., Khoo, K. H. & Tsai, I. H. (2008) New insights into the functions and N-glycan structures of factor X activator from Russell's viper venom, FEBS J 275, 3944-3958. 39. Lin, C. W., Chen, J. M., Wang, Y. M., Wu, S. W., Tsai, I. H. & Khoo, K. H. (2011) Terminal disialylated multiantennary complex-type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom, Glycobiology 21, 530-542. 40. Yu, S. Y., Wu, S. W. & Khoo, K. H. (2006) Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing ofpermethylated complex type N-glycans, Glycoconj J 23, 355-369. 41. Myatt, E. A., Stevens, F. J. & Sigler, P. B. (1991) Effects of pH and calcium ion on self-association properties of two dimeric phospholipases A2, J Biol Chem 266, 16331-16335. 42. Tsai, I. H., Wang, Y. M., Au, L. C., Ko, T. P., Chen, Y. H. & Chu, Y. F. (2000) Phospholipases A2 from Callosellasma rhodostoma venom gland - cloning and sequencing of ten of the cDNAs, three-dimensional modelling and chemical modification of the major isozyme, Eur J Biochem 267, 6684-6691. 43. Wang, Y. M., Peng, H. F. & Tsai, I. H. (2005) Unusual venom phospholipases A2 of two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis, FEBS J 272, 3015-3025. 44. Liu, X. L., Wu, X. F. & Zhou, Y. C. (2001) Identification of key residues responsible for enzymatic and platelet aggregation-inhibiting activities of acidic phospholipase A2s from Agkistrodon halys Pallas, J Nat Toxins 10, 43-55. 45. Ouyang, C. & Huang, T. F. (1984) Effect of the purified phospholipases A2 from snake and bee venoms on rabbit platelet-function, Toxicon 22, 705-718. 46. Lynch, V. J. (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes, Bmc Evol Biol 7. 47. Tsai, I. H., Wang, Y. M., Chen, Y. H., Tsai, T. S. & Tu, M. C. (2004) Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): molecular characterization, geographic variations and evidence of multiple ancestries, Biochem J 377, 215-223. 48. Gibbs, H. L. & Mackessy, S. P. (2009) Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes, Toxicon 53, 672-679. 49. Chen, Y. L., Huang, T. F., Chen, S. W. & Tsai, I. H. (1995) Determination of the structure of two novel echistatin variants and comparison of the ability of echistatin variants to inhibit aggregation of platelets from different species, Biochem J 305, 513-520. 50. Kini, R. M. & Evans, H. J. (1997) Effects of phospholipases A2 enzymes on platelet aggregation. In Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism (Kini, R. M. ed), Wiley, London, 369-388 51. Pearson, J. A., Tyler, M. I., Retson, K. V. & Howden, M. E. H. (1993) Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 3. The complete amino-acid sequences of all the subunits, Biochim Biophys Acta 1161, 223-229. 52. Shipolini, R. A., Callewaert, G. L., Cottrell, R. C., Doonan, S., Vernon, C. A. & Banks, B. E. (1971) Phospholipase A from bee venom, Eur J Biochem 20, 459-468. 53. Kini, R. M. & Evans, H. J. (1995) A hypothetical structural role for prolineresidues in the flanking segments of protein-protein interaction sites, Biochem Biophys Res Commun 212, 1115-1124. 54. Kubelka, V., Altmann, F., Staudacher, E., Tretter, V., Marz, L., Hard, K., Kamerling, J. P. & Vliegenthart, J. F. (1993) Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2, Eur J Biochem 213, 1193-1204. 55. Berg, O. G., Gelb, M. H., Tsai, M. D. & Jain, M. K. (2001) Interfacial enzymology: the secreted phospholipase A2-paradigm, Chem Rev 101, 2613-2653. 56. Joseph, J. S., Valiyaveettil, M., Gowda, D. C. & Kini, R. M. (2003) Occurrence of O-linked Xyl-GlcNAc and Xyl-Glc disaccharides in trocarin, a factor Xa homolog from snake venom, J Thromb Haemost 1, 545-550. 57. Mehrtens, J. (1987) Living Snakes of the World. 58. Christy, N. P., Phillips, G. B., Dowling, H. G., and Middleton, E. (1967) Poisoning by venomous animals, Am J Med 42. 59. Veto, T., Price, R., Silsby, J. F. & Carter, J. A. (2007) Treatment of the first known case of king cobra envenomation in the United Kingdom, complicated by severe anaphylaxis, Anaesthesia 62, 75-78. 60. Chang, C. C., Huang, T. Y., Kuo, K. W., Chen, S. W., Huang, K. F. & Chiou, S. H. (1993) Sequence characterization of a novel alpha-neurotoxin from the king cobra (Ophiophagus hannah) venom, Biochem Bioph Res Co 191, 214-223. 61. Ganthavorn, S. (1969) Toxicities of Thailand snake venoms and neutralization capacity of antivenin, Toxicon 7, 239-241. 62. Gold, B. S. & Pyle, P. (1998) Successful treatment of neurotoxic king cobra envenomation in Myrtle Beach, South Carolina, Ann Emerg Med 32, 736-738. 63. Kini, R. M. (2002) Molecular moulds with multiple missions: functional sites in three-finger toxins, Clin Exp Pharmacol Physiol 29, 815-822. 64. Nirthanan, S. & Gwee, M. C. (2004) Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on, J Pharmacol Sci 94, 1-17. 65. Tsernoglou, D., Petsko, G. A. & Hudson, R. A. (1978) Structure and function of snake venom curarimimetic neurotoxins, Mol Pharmacol 14, 710-716. 66. Chang, C. C. (1999) Looking back on the discovery of alpha-bungarotoxin, J Biomed Sci 6, 368-375. 67. Lee, C. Y. (1972) Chemistry and pharmacology of polypeptide toxins in snake venoms, Annu Rev Pharmacol 12, 265-286. 68. Menez, A. (1998) Functional architectures of animal toxins: a clue to drug design, Toxicon 36, 1557-1572. 69. Tsetlin, V. (1999) Snake venom alpha-neurotoxins and other 'three-finger' proteins, Eur J Biochem 264, 281-286. 70. Hodgson, W. C. & Wickramaratna, J. C. (2002) In vitro neuromuscular activity of snake venoms, Clin Exp Pharmacol Physiol 29, 807-814. 71. Tan, N. H. & Saifuddin, M. N. (1990) Purification and characterization of two acidic phospholipase A2 enzymes from king cobra (Ophiophagus hannah) snake venom, Int J Bio 22, 481-487. 72. Chiou, J. Y., Chang, L. S., Chen, L. N. & Chang, C. C. (1995) Purification and characterization of a novel phospholipase A2 from king cobra (Ophiophagus hannah) venom, J Protein Chem 14, 451-456. 73. Huang, M. Z., Gopalakrishnakone, P., Chung, M. C. M. & Kini, R. M. (1997) Complete amino acid sequence of an acidic, cardiotoxic phospholipase A2 from the venom of Ophiophagus hannah (King cobra): a novel cobra venom enzyme with 'pancreatic loop', Arch Biochem Biophys 338, 150-156. 74. Wang, Q. Y., Shu, Y. Y., Zhuang, M. X. & Lin, Z. J. (2001) Cloning and sequence analysis of cDNAs encoding two acidic PLA2 from venom of Ophiophagus hannah (king cobra), Guangxi species, Acta Bioch Bioph Sin 33, 340-344. 75. Hu, R. Q., Wang, J. L. & Lei, K. J. (1982) Isolation and properties of L-amino acid oxidase from Ophiophagus hannah venom, Sci Sin B 25, 941-952. 76. Jin, Y., Lee, W. H., Zeng, L. & Zhang, Y. (2007) Molecular characterization of L-amino acid oxidase from king cobra venom, Toxicon 50, 479-489. 77. Guo, X. X., Zeng, L., Lee, W. H., Zhang, Y. & Jin, Y. (2007) Isolation and cloning of a metalloproteinase from king cobra snake venom, Toxicon 49, 954-965. 78. He, Y. Y., Liu, S. B., Lee, W. H., Qian, J. Q. & Zhang, Y. (2008) Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom, Peptides 29, 1692-1699. 79. Lee, W. H., Zhang, Y., Wang, W. Y., Xiong, Y. L. & Gao, R. (1995) Isolation and properties of a blood coagulation factor X activator from the venom of king cobra (Ophiophagus hannah), Toxicon 33, 1263-1276. 80. Chang, L. S., Chung, C., Huang, H. B. & Lin, S. R. (2001) Purification and characterization of a chymotrypsin inhibitor from the venom of Ophiophagus hannah (King Cobra), Biochem Bioph Res Co 283, 862-867. 81. He, Y. Y., Lee, W. H. & Zhang, Y. (2004) Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah), Toxicon 44, 295-303. 82. Li, J., Zhang, H. Y., Liu, J. & Xu, K. S. (2006) Novel genes encoding six kinds of three-finger toxins in Ophiophagus hannah (king cobra) and function characterization of two recombinant long-chain neurotoxins, Biochem J 398, 233-242. 83. Joubert, F. J. (1973) Snake venom toxins the amino acid sequences of two toxins from Ophiophagus hannah (King cobra) venom, Biochim Biophys Acta 317, 85-98. 84. Peng, S. S., Kumar, T. K. S., Jayaraman, G., Chang, C. C. & Yu, C. (1997)Solution structure of toxin b, a long neurotoxin from the venom of the king cobra (Ophiophagus hannah), J Biol Chem 272, 7817-7823. 85. Roy, A., Zhou, X., Chong, M. Z., D'Hoedt, D., Foo, C. S., Rajagopalan, N., Nirthanan, S., Bertrand, D., Sivaraman, J. & Kini, R. M. (2010) Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra), J Biol Chem 285, 8302-8315. 86. Xu, S., Gu, L., Wang, Q., Shu, Y., Song, S. & Lin, Z. (2003) Structure of a king cobra phospholipase A2 determined from a hemihedrally twinned crystal, Acta Crystallogr D Biol Crystallogr 59, 1574-1581. 87. Tan, N. H. & Hj, M. N. S. (1989) Enzymatic and toxic properties of Ophiophagus hannah (King Cobra) venom and venom fractions, Toxicon 27, 689-695. 88. Whitaker, J. R. (1983) Methods of Enzymatic Analysis, Vol 1, Fundamentals - Bergmeyer,Hu, Food Technol-Chicago. 37, 142-143. 89. Lo, T. B., Chen, Y. H. & Lee, C. Y. (1966) Chemical studies of Formosan cobra (Naja naja atra) venom. 1. Chromatographic separation of crude venom on CM-sepadex and preliminary characterization of its components, J Chin Chem Soc-Taip 13, 25. 90. Wang, W. J. & Huang, T. F. (2002) Purification and characterization of a novel metalloproteinase, acurhagin, from Agkistrodon acutus venom, Thromb Haemost 87, 641-650. 91. Dhananjaya, B. L. & D'Souza, C. J. (2011) The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines-a multitoxin, Basic Clin Pharmacol Toxicol 108, 79-83. 92. Huang, M. Z., Wang, Q. C. & Liu, G. F. (1993) Effects of an acidic phospholipase-A2 purified from Ophiophagus hannah (king cobra) venom on rat-heart, Toxicon 31, 627-635. 93. Zhang, H. L., Xu, S. J., Wang, Q. Y., Song, S. Y., Shu, Y. Y. & Lin, Z. J. (2002) Structure of a cardiotoxic phospholipase A2 from Ophiophagus hannah with the 'pancreatic loop', J Struct Biol 138, 207-215. 94. Finley, E. L., Dillon, J., Crouch, R. K. & Schey, K. L. (1998) Identification of tryptophan oxidation products in bovine alpha-crystallin, Protein Sci 7, 2391-2397. 95. Fox, J. W. & Serrano, S. M. (2005) Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases, Toxicon 45, 969-985. 96. Servent, D., Winckler-Dietrich, V., Hu, H. Y., Kessler, P., Drevet, P., Bertrand, D. & Menez, A. (1997) Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha-7 nicotinic receptor, J Biol Chem 272, 24279-24286. 97. Huang, M. Z., Gopalakrishnakone, P. & Kini, R. M. (1997) Role of enzymaticactivity in the antiplatelet effects of a phospholipase A2 from Ophiophagus hannah snake venom, Life Sci 61, 2211-2217. 98. Aird, S. D. (2005) Taxonomic distribution and quantitative analysis of free purine and pyrimidine nucleosides in snake venoms, Comp Biochem Phys B 140, 109-126. 99. Nunez, C. E., Angulo, Y. & Lomonte, B. (2001) Identification of the myotoxic site of the Lys49 phospholipase A2 from Agkistrodon piscivorus piscivorus snake venom: synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert membrane-damaging activities, Toxicon 39, 1587-1594. 100. Ma, D., Armugam, A. & Jeyaseelan, K. (2002) Cytotoxic potency of cardiotoxin from Naja sputatrix: development of a new cytolytic assay, Biochem J 366, 35-43. 101. Song, J., Chung, M. C. M., Xiong, Y., Wang, W. and Pu, X. (1994) Purification, sequence and pharmacological studies of new alpha-neurotoxin from Ophiophagus hannah venom., Toxicon 32, 537-538. 102. Rajagopalan, N., Pung, Y. F., Zhu, Y. Z., Wong, P. T., Kumar, P. P. & Kini, R. M. (2007) Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity, FASEB J 21, 3685-3695. 103. Chang, L. S., Liou, J. C., Lin, S. R. & Huang, H. B. (2002) Purification and characterization of a neurotoxin from the venom of Ophiophagus hannah (king cobra), Biochem Bioph Res Co 294, 574-578. 104. Joubert, F. J. (1977) Snake venoms. The amino-acid sequence of polypeptide DE-1 from Ophiophagus hannah (king cobra) venom, Hoppe Seylers Z Physiol Chem 358, 565-574. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65907 | - |
| dc.description.abstract | 在後基因體時代,蛇毒的研究在蛋白質體及轉錄體方面都快速進展,許多蝮蛇及眼鏡王蛇蛇毒亦不例外。探討蛇毒地理的或個別的變異性為蛇毒蛋白質體研究的一個層次或面向。在此,我們藉由蛋白質體以及醣質體分析方法探討來自兩個地區的華勒蝮以及四個地區的眼鏡王蛇其蛇毒當中主要的蛋白質的異同以及其生理功能特性。
第一部分 從蘇拉維西以及蘇門答臘的華勒蝮蛇毒中我們分別純化到兩個磷酯酶,其中一個是具活性、第六個胺基酸為榖胺酸的磷酯酶(稱之E6-PLA2),而另一個則是不具活性、推測其第49個胺基酸可能為賴胺酸的磷酯酶(Lys49-like PLA2)。從這兩個地區分離純化到的磷酯酶無論是在分子量或是N端胺基酸序列都明顯不同,雖然他們在表現物種特有的神經毒素waglerin上具有高度保留性,從結果上看來這兩個地區的華勒蝮可能是兩個不同的種(T.subannulatus 以及 T. wagleri)。這個結果也是與西元2007年發表此蛇分類的結果是相符的。這兩個地區所表現具活性的磷酯酶,在本篇研究中也依照他們可能分屬的種名,命名為Tsu-E6(來自蘇拉維西)以及Twa-E6(來自蘇門答臘)。而後續研究發現,這兩個E6-PLA2在胺基酸序列第14位置的天門醯胺上有醣化的現象。進一步以N-醣醯胺酶(PNGase F)水解去除醣基可發現磷酯酶的分子量明顯從16 kDa減少到14 kDa,並且以質譜(MALDI-TOF)分析水解下來的醣基發現其是一個不具涎酸化(sialylation)且混合型式的寡糖。研究其生理功能,我們發現Tsu-E6對於由ADP引起的小鼠或人類血小板凝集作用都是抑制效果,而Twa-E6對於由ADP或膠原蛋白所引起的人類血小板凝集也是相同的作用,但對小鼠的血小板凝集卻是誘導作用。若進一步去分析這兩個磷酯酶在去除醣基後酵素活性或是血小板凝集作用則是沒有顯著差異。另外,探討醣基是否對蛋白質的熱穩定性有所影響,其結果發現Twa-E6的熱穩定性與其他不具醣基的磷酯酶是一樣的好。從以上結果可知,這個醣基的存在也許有其他的生理意義仍有 待我們進一步的探討。 第二部分 目前文獻上少有眼鏡王蛇毒地理差異的研究。我們買了分別來自印尼、馬來西亞、廣東、海南島等四個不同地區的眼鏡王蛇毒來分析其蛋白成分是否存在地理性差異。從蛇毒的酵素活性、用三種色層柱分析主要蛋白質組成,以及對小鼠毒性等分析結果發現其地理性的差異確實存在。以往文獻指出從中國幾個地區的眼鏡王蛇毒中純化到主要為已知名為OH-APLA2的磷酯酶,但來自印尼以及馬來西亞的蛇毒則表現另一在研究新發現並命名為PLA-3的酵素。三指毒素(3FTx)成分而言,雖然在這四個地區的蛇毒中具有或高或低的oh-55,但其他種神經毒素或3FTxs的組成卻是具有高度變異性的。另外,東南亞的眼鏡王蛇毒不像中國的含有明顯prothrombin活化酵素,我們的研究發現來自印尼的眼鏡王蛇毒含有比較高活性的鹼性磷酸酶(alkaline phosphomonoesterase),卻有極低的磷酯酶。這些酵素可能彼此在蛇毒毒性上有協同作用,在未來可能值得進一步的探討。 | zh_TW |
| dc.description.abstract | Herein, we have investigated the geographic variations of Tropidolaemus wagleri from two regions and those of O. hannah from four regions by venom protein purifications, identification and biofuntional characterizations using the proteomic and glycomic approaches.
Part I. Phospholipases A2 (PLA2s) were purified and characterized from Tropidolaemus wagleri venoms collected from Sulawesi and Sumatra. An active PLA2 and an inactive Lys49-like PLA2 could be isolated from each venom sample. Mass analyses and N-terminal sequences revealed that the PLA2 variants from the two venom samples were different although their neurotoxic waglerins were identical. Thus, the samples were probably derived from two species (T. subannulatus and T. wagleri), consistent with the recent taxonomic study of this genus. Since the Glu6 residue was conserved in both the PLA2s, the PLA2s from Sulawesi and Sumatra were designated as Tsu-E6 and Twa-E6, respectively. Interestingly, both Tsu-E6 and Twa-E6 appeared to be glycosylated at Asn14. Hydrolysis by PNGase F reduced their apparent masses from 16 to 14 kDa. The released glycans were further analyzed by MALDI-TOF and shown to be complex type oligosaccharides without sialylation. Tsu-E6 inhibited ADP-induced aggregation of mouse and human platelets, and Twa-E6 inhibited the ADP- or collagen-induced aggregation of human platelets, but stimulated the aggregation of mouse platelets. However, enzymatic removal of glycans from both the PLA2s did not significantly alter their effects on lipid hydrolysis and platelet aggregation. The thermostability of Twa-E6 was found to be as good as those of other homologous PLA2s. The presence of these oligosaccharides on snake venom PLA2s therefore warrants further analyses. Part II. We profiled and analyzed four geographic venom samples of O. hannah which were obtained from Indonesia, Malaysia, Guangxi, and Hai-Nan. The enzyme activities, toxicities on mice of the four venoms were investigated. The PLA2s and 3FTxs were purified. There are great geographic variations in the enzyme content, protein composition and toxic properties between the Southeast Asian and Chinese king cobra venoms. The OH-APLA2 is the major PLA2 conserved in the venoms from China, and the venom from Indonesia and Malaysia express a PLA2 similar to OH-APLA2 II as judged by PMF analysis. Chinese king cobra venoms appear to have lower metalloprotease or hemorrahagin activities but higher prothrombinase activities. Even though the oh-55 3FTx is conserved in king cobra venoms, it is not the most abundant in all the kign cobra venom. The composition of the other 3FTx variants is highly variable. Finally, the venom from Indonesia is especially performing high alkaline phosphomonoesterase activity, which may present synergistic reaction in the toxic property of venom. This will need a further investigation to resovle. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:15:02Z (GMT). No. of bitstreams: 1 ntu-101-R99b46002-1.pdf: 2063490 bytes, checksum: 18556c3588410e9a3092bc5f88cf9aa0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Lists of Abbreviations ........................... i
Lists of Tables .................................. ii Lists of Figures ................................. iii Background ....................................... 1 Part 1 Glycan structures and intrageneric variations of venom acidic phospholipases A2 from Tropidolaemus pitvipers 1-1. Introduction ................................ 4 1-2. Materials and methods ....................... 7 1-2-1. Venom and reagents ........................ 7 1-2-2. Purification of PLA2s and waglerins ....... 7 1-2-3. Assay of PLA2s ............................ 7 1-2-4. Protein sequencing and mass analyses ...... 8 1-2-5. Peptide mass fingerprinting ............... 8 1-2-6. Differential scanning calorimetry ......... 9 1-2-7. Deglycosylation of the PLA2s .............. 9 1-2-8.Platelet aggregation assay ................. 10 1-2-9. Release of N-glycan and MS analyses of permethylated glycans .......................................... 10 1-3. Results ..................................... 11 1-3-1. Purification and characterization of PLA2 variants ......................................... 11 1-3-2. N-terminal sequences, PMF results, and thermostability of the PLA2 ...................... 12 1-3-3. Purification and mass analyses of waglerins ........................................ 12 1-3-4. Evidence that both Tsu-E6 and Twa-E6 are glycoproteins .....................................13 1-3-5. Structures of the N-glycans of the PLA2s .. 14 1-3-6. Functional comparison of the native and the deglycosylated PLA2s ............................. 15 1-4. Discussion .................................. 28 Part 2 Geographic variations of king cobra venom 2-1. Introduction ................................ 33 2-2. Materials and methods ....................... 36 2-2-1. Venom and reagents ........................ 36 2-2-2. Protein quantification .................... 36 2-2-3. SDS-polyacrylamide gel electrophoresis .... 36 2-2-4. Lethality of O. hannah venom samples ...... 36 2-2-5. Enzyme assay and kinetic study of L-amino acid oxidase .......................................... 37 2-2-6. Assay for alkaline phosphomonoesterase activity ......................................... 37 2-2-7. Caseinolytic activity assay and inhibitor study ............................................ 37 2-2-8. Phospholipase A2 activity assay ........... 38 2-2-9. Purification of PLA2s ..................... 38 2-2-10. Purification of 3FTxs .................... 39 2-2-11. Mass spectrometry ........................ 39 2-2-12. N-terminal sequencing .................... 40 2-2-13. Peptide mass fingerprinting............... 40 2-3. Results ..................................... 41 2-3-1. SDS-PAGE pattern .......................... 41 2-3-2. Enzymatic and lethal activities of the four king cobra venom samples .............................. 41 2-3-3. Purification and characterization of PLA2s 42 2-3-3. Purification and mass analysis of 3FTxs ... 44 2-4. Discussion .................................. 61 Appendixes ....................................... 65 References ....................................... 71 | |
| dc.language.iso | en | |
| dc.subject | 三指毒素 | zh_TW |
| dc.subject | 眼鏡王蛇 | zh_TW |
| dc.subject | 華勒蝮 | zh_TW |
| dc.subject | 蛇毒地理性差異 | zh_TW |
| dc.subject | 磷酯酶 | zh_TW |
| dc.subject | 血小板凝集抑制劑 | zh_TW |
| dc.subject | 聚醣結構 | zh_TW |
| dc.subject | A2 | zh_TW |
| dc.subject | geographic variation | en |
| dc.subject | three-finger toxin | en |
| dc.subject | Ophiophagus hannah | en |
| dc.subject | Tropidolaemus wagleri | en |
| dc.subject | platelet aggregation inhibitor | en |
| dc.subject | glycan structure | en |
| dc.subject | venom phospholipases A2 | en |
| dc.title | 以蛋白質體及醣質體分析華勒蝮以及眼鏡王蛇兩種蛇毒的地理差異 | zh_TW |
| dc.title | Proteomic and glycomic analyses of venom geographic variations of Wagler's pit vipers and king cobra | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳世雄,朱善德,管永恕 | |
| dc.subject.keyword | 蛇毒地理性差異,磷酯酶,A2,聚醣結構,血小板凝集抑制劑,華勒蝮,眼鏡王蛇,三指毒素, | zh_TW |
| dc.subject.keyword | geographic variation,venom phospholipases A2,glycan structure,platelet aggregation inhibitor,Tropidolaemus wagleri,Ophiophagus hannah,three-finger toxin, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
