請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65899
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林啟萬 | |
dc.contributor.author | You-Zheng Yin | en |
dc.contributor.author | 尹又正 | zh_TW |
dc.date.accessioned | 2021-06-17T00:14:51Z | - |
dc.date.available | 2013-07-19 | |
dc.date.copyright | 2012-07-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-05 | |
dc.identifier.citation | [1] L. J. Li and D. Uttamchandani, 'A Microwave Dielectric Biosensor Based on Suspended Distributed MEMS Transmission Lines,' IEEE Sensors Journal, vol. 9, pp. 1825-1830, Dec 2009.
[2] A. Kraszewski, 'Microwave Aquametry - a Review,' Journal of Microwave Power and Electromagnetic Energy, vol. 15, pp. 209-220, 1980. [3] G. H. W. Sanders and A. Manz, 'Chip-based microsystems for genomic and proteomic analysis,' Trac-Trends in Analytical Chemistry, vol. 19, pp. 364-378, Jun 2000. [4] S. SolinasToldo, S. Lampel, S. Stilgenbauer, J. Nickolenko, A. Benner, H. Dohner, T. Cremer, and P. Lichter, 'Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances,' Genes Chromosomes & Cancer, vol. 20, pp. 399-407, Dec 1997. [5] X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, 'The power and prospects of fluorescence microscopies and spectroscopies,' Annual Review of Biophysics and Biomolecular Structure, vol. 32, pp. 161-182, 2003. [6] S. E. D. Webb, S. K. Roberts, S. R. Needham, C. J. Tynan, D. J. Rolfe, M. D. Winn, D. T. Clarke, R. Barraclough, and M. L. Martin-Fernandez, 'Single-molecule Imaging and fluorescence lifetime imaging microscopy show different structures for high-and low-affinity epidermal growth factor receptors in A431 cells,' Biophysical Journal, vol. 94, pp. 803-819, Feb 1 2008. [7] T. Chen, S. Li, and H. Sun, 'Metamaterials Application in Sensing,' Sensors, vol. 12, pp. 2742-2765, 2012. [8] C. P. Wen, 'Coplanar Waveguide . A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,' IEEE Transactions on Microwave Theory and Techniques, vol. Mt17, pp. 1087-&, 1969. [9] I. A. Ibraheem and M. Koch, 'Coplanar waveguide metamaterials: The role of bandwidth modifying slots,' Applied Physics Letters, vol. 91, Sep 10 2007. [10] S. S. Stuchly and C. E. Bassey, 'Microwave coplanar sensors for dielectric measurements,' Measurement Science & Technology, vol. 9, pp. 1324-1329, Aug 1998. [11] L. G. Maloratsky, 'Reviewing the basics of microstrip lines,' Microwaves & Rf, vol. 39, pp. 79-+, Mar 2000. [12] J. F. Max Sucher, Handbook of microwave measurements. New York: Polytechnic Press of the Polytechnic Institute of Brooklyn, 1963. [13] G. P. D. L. a. F. W. Meijboom, 'The dielectric constant of foods and other materials with high water contents at microwave frequencies,' International Journal of Food Science & Technology, vol. 1, pp. 313-322, 1966. [14] N. E. a. P. O. R. Bengtsson, 'Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique. II. Measurements on food materials,' Journal of Microwave Power, vol. 6, pp. 107-123, 1971. [15] D. R. a. G. L. Z. Thompson, 'Dielectric theory and bioelectrical measurements [Part II. Experimental (Apples)],' Transactions of ASAE, vol. 14, pp. 214-215, 1971. [16] A. C. M. a. R. J. Meredith, Industrial Microwave Heating. Piscataway, NJ: Peter Peregrinus, 1983. [17] R. T. Puers, Jef, 'Short Distance Wireless Communications,' in Bio-Medical CMOS ICs, ed, 2011. [18] P. V. Ebbe Nyfors, Industrial microwave sensors. Boston: Artech House, 1989. [19] S. O. Nelson, 'Dielectric-Properties of Agricultural Products - Measurements and Applications,' IEEE Transactions on Electrical Insulation, vol. 26, pp. 845-869, Oct 1991. [20] K. Grenier, D. Dubuc, P. E. Poleni, M. Kumemura, H. Toshiyoshi, T. Fujii, and H. Fujita, 'Resonant based microwave biosensor for biological cells discrimination,' in Radio and Wireless Symposium (RWS), 2010 IEEE, 2010, pp. 523-526. [21] I. Iramnaaz, Y. Xing, K. Xue, Y. Zhuang, and R. Fitch, 'Graphene based RF/microwave impedance sensing of DNA,' in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 1030-1034. [22] H. J. Lee, J. H. Lee, and H. I. Jung, 'A symmetric metamaterial element-based RF biosensor for rapid and label-free detection,' Applied Physics Letters, vol. 99, Oct 17 2011. [23] M. S. V. a. G. S. V. Raghavan, 'An overview of dielectric properties measuring techniques,' CANADIAN BIOSYSTEMS ENGINEERING, vol. 47, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65899 | - |
dc.description.abstract | 隨著生物醫學感測應用的增加,創新的技術和架構必須不斷推陳出新。為了改善傳統方法必須依賴螢光標示與電化學反應才能進行感測應用的侷限性,本研究 提出非侵入式近場電磁感應技術,實作一以天線設計技術為基礎之生物感測器, 探討天線與不同介電性質樣品間的近場電磁相互作用,藉由天線和測試樣品之間的電磁耦合分析,達到無需進行螢光標示或化學反應即可分辨不同介電性質差異性之目標。
此天線感測器的設計採用共面波導(coplanar waveguide)饋入機制,此機制之特性為透過表面微帶傳輸線(surface-strip transmission line)將接地導體面(ground plane)緊鄰並平行於中心導體兩側,再由兩個溝槽區隔位於介質基板的同一平面。相較於傳統的微帶線技術,共面波導機制擁有多種優勢,如可將待測樣品放置或接觸在感測器背面以進行量測,可提供非破壞性的測量功能。共面波導天線型感測器的設計首先透過Ansoft HFSS模擬軟體進行模型建立與模擬,再利用厚度為0.8毫米的FR-4基板進行實作,具有低成本之實作優勢,成品尺寸為(20x20x0.8)立方毫米。 本研究應用兩種測量方法進行研究成果測試,第一種方法將液體樣本滴入共面波導天線感測器表面,以塑膠貼紙製成的樣品界限區域內;第二種方法則將液體樣本流過共面波導天線感測器背面的微流道。所有的測量過程均使用Agilent E5071B網絡分析儀,以不同濃度的乙醇、甲醇、葡萄糖、氯化鈉(食鹽),及含有不同成份的日常飲料如啤酒、紅酒和烈酒等液體樣本進行量測。量測結果證實本研究所發展的共面波導天線型生物感測器,可成功辨別不同液體的介電特性,有助未來非侵入式生物醫學感測之應用。 | zh_TW |
dc.description.abstract | As the demand for biomedical sensing applications increase, an innovative techniques and architectures are required. To overcome the limitations of traditional methods, noninvasive near-filed electromagnetic sensing technique is proposed for biomedical applications. An antenna based biosensor is developed to investigate the near-field electromagnetic interaction between antenna and sample with different dielectric properties. These dielectric properties can be determined by analyzing the electromagnetic coupling between the antenna and the test samples without labeling or chemical reaction.
The antenna biosensor is developed by applying the coplanar waveguide (CPW) feeding mechanism, a surface-strip transmission line (TL), which consists of a strip on thin metallic film deposited on the surface of a dielectric slab with two ground electrodes running adjacent and parallel to the strip on the same surface. The coplanar waveguide offers a variety of advantages over the conventional micro-strip line, it can be placed conveniently in contact with one side of the test material and therefore provide non-destructive measurements. The coplanar waveguide (CPW) antenna biosensor is modeled and simulated with Ansoft HFSS and fabricated on inexpensive FR-4 substrate of thickness 0.8 mm, the overall dimension of the antenna biosensor is (20x20x0.8)mm3. Two measurement methods were applied in this research, one supply the sample to the surface of the antenna with a tape boundary, and another by a fluidic channel attached on the backside of the coplanar waveguide antenna biosensor, all measurements were taken by Agilent E5071B Network Analyzer. Experimentally validated the liquid samples with different dielectric properties, different concentrations of ethanol, methanol, glucose, sodium chloride solution, and different daily beverage like beer, red wine and liquor were measured and determined with the proposed coplanar waveguide antenna biosensor. The results exhibit the potential applications in bio-sensing. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:14:51Z (GMT). No. of bitstreams: 1 ntu-101-R99548056-1.pdf: 4841910 bytes, checksum: f4634503138b9886e1a9c39797cffae3 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction and motivation 1 1.1 Research outcomes 2 1.2 Overview of the Transmission Line types 3 1.3 Methods of dielectric property measurement 5 1.3.1 Similar measurement techniques reported in the literature 6 Chapter 2 Theoretical and Basic Principles 12 Basic Microwave-material interaction Aspects 12 Chapter 3 CPW Antenna Biosensor Design 15 Chapter 4 Measurement Results and Applications 18 4.1 Measurements with Boundary Tape 18 4.1.1 Measurements of DI water 19 4.1.2 Measurements of different concentration of Ethanol 20 4.1.3 Measurements of different concentration of Methanol 22 4.1.4 Measurements of different concentration of NaCl 23 4.1.5 Measurements of different brand of Beer 24 4.1.6 Measurements of different brand of Liquor 25 4.1.7 Measurements of different moisture content of Agarose 26 4.2 Measurements with Fluid Channel 27 4.2.1 Measurements of DI water 29 4.2.2 Measurements of different concentration of Ethanol 29 4.2.3 Different Ethanol concentration compared to DI water 33 4.2.4 Measurements of different concentration of Methanol 35 4.2.5 Different Methanol concentration compared to DI water 39 4.2.6 Measurements of different concentration of NaCl 40 4.2.7 Measurements of different concentration of D-glucose and glucose 49 4.2.8 Measurements of different brand of Beer 54 4.2.9 Measurements of different brand of Red wine 57 4.2.10 Measurements of different brand of Liquor 58 Chapter 5 Conclusions 59 REFERENCE 60 | |
dc.language.iso | en | |
dc.title | 共面波導天線型生物感測器之設計與應用 | zh_TW |
dc.title | Design and Applications of a Coplanar Waveguide Antenna Biosensor | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許博文,張道治 | |
dc.subject.keyword | 非侵入式,近場電磁,共面波導,介電性質,天線型生物感測器, | zh_TW |
dc.subject.keyword | noninvasive,near-field electromagnetic,coplanar waveguide,dielectric,antenna biosensor, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。