Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65861
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor朱士維(Shi-Wei Chu),張之威(Chih-Wei Chang)
dc.contributor.authorYu-Sheng Chenen
dc.contributor.author陳鈺盛zh_TW
dc.date.accessioned2021-06-17T00:13:52Z-
dc.date.available2020-02-18
dc.date.copyright2020-02-18
dc.date.issued2020
dc.date.submitted2020-02-14
dc.identifier.citation[1] Dhar, A, Heat Transport in low-dimensional systems. Advances in Physics, Vol. 57, No. 5, 457-537 (2008).
[2] Chang, C.W., et al., Breakdown of Fourier's Law in Nanotube Thermal Conductors. Physical Review Letters, 101(7): p. 075903 (2008).
[3] Hicks, L.D. and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 47(19): p. 12727-12731 (1993).
[4] Hicks, L.D. and M.S. Dresselhaus, Thermoelectric figure of merit of a one- dimensional conductor. Physical Review B, 47(24): p. 16631-16634 (1993).
[5] Hsiao, T.-K., et al., Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires. Nat Nanotechnol, 8(7): p. 534-538 (2013).
[6] Huang, B.-W., et al., Length-dependent thermal transport and ballistic thermal conduction. AIP Advances, 5(5): p. 053202 (2015).
[7] Lee, V., et al., Divergent and Ultrahigh Thermal Conductivity in Millimeter-Long Nanotubes. Physical Review Letters, 118(13): p. 135901 (2017).
[8] Hochbaum, A. I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163-165 (2008).
[9] Shi, L., et al., Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer.125, 881-888 (2003).
[10] Wingert, M. C., et al., Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev Sci Instrum 83 (2012).
[11] Zhu, G.H., et al., Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium. Physical Review Letters, 102(19): p. 196803 (2009).
[12] Bera, C., N. Mingo, and S. Volz, Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials. Physical Review Letters, 104(11): p. 115502 (2010).
[13] Garg, J., et al., Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study. Physical Review Letters, 106(4): p. 045901 (2011).
[14] Lepri, S., et al., Thermal conduction in classical low-dimensional lattices. Physics Reports 377, 1-80 (2003).
[15] Day, P. K. et al. Breakdown of Fourier's Law near the superfluid transition in He-4. Physical review letters81, 2474-2477 (1998).
[16] Saito, K., et al., Thermal conduction in a quantum system. Physical Review E, 54(3): p. 2404-2408 (1996).
[17] Lepri, S., et al., Heat Conduction in Chains of Nonlinear Oscillators. Physical Review Letters, 78(10): p. 1896-1899 (1997).
[18] B. Li, et al., Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices. Phys. Rev. Lett., 1;86(1):63-66 (2001).
[19] Dhar, A. et al., Heat conduction in the disordered Fermi-Pasta-Ulam chain. Physical Review E, 78(6): p. 061136 (2008).
[20] Zhan, T., et al., Thermal boundary resistance at Si/Ge interfaces by molecular dynamics simulation. AIP Advances, 5(4): p. 047102 (2015).
[21] Li, X., et al., Comparison of isotope effects on thermal conductivity of graphene nanoribbons and carbon nanotubes. Applied Physics Letters, 103(1): p. 013111 (2013).
[22] Fumio, N., et al., Thermal Conductance of Buckled Carbon Nanotubes. Japanese Journal of Applied Physics, 51(1R): p. 015102 (2012).
[23] Zhou, Yanguang et al., Strong Surface Orientation Dependent Thermal Transport in Si Nanowires. Scientific Reports. 6. 10.1038/srep24903 (2016).
[24] Hu, M., et al., Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity. Nano Lett. 12, 5487 (2012).
[25] Hu, M., et al., Thermal conductivity reduction in core-shell nanowires. Physical review. B, Condensed matter 84, 085442 (2011).
[26] Hochbaum, A. I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
[27] Boukai, A. I., et al., Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).
[28] Hicks, L. D., et al., Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631(R) (1993).
[29] Hu, M., et al., Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618 (2011).
[30] Tang, J., et al., Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279 (2010).
[31] Deyu Li., et al., Thermal conductivity of individual silicon nanowires. Applied Physics Letters 83, 2934 (2003).
[32] Xiang Z., et al., Thermal conductivity and diffusivity of free‐standing silicon nitride thin films. Review of Scientific Instruments 66, 1115 (1995).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65861-
dc.description.abstract在這篇論文中,我提出一種實驗方法,去量測各種奈米線上不同位置的局部溫度與電壓,以及相關的傳輸性質。我將利用掃描式電子顯微鏡的電子束加熱方法證明其可行性。
  在論文的第一部份,我會簡單介紹一下我做這個研究主題的背景與動機。
  在論文的第二部分,我會介紹一些我在實驗上使用到的裝置和前置工作,包括使用的掃描式電子顯微鏡、鎖相放大器、儀器架設、如何測量元件的溫度係數;以及我們設計了一個裝置,可以週期性地加熱奈米線並減低其噪音,再用鎖相放大器偵測其訊號。
  在論文的第三部分,我主要在探討如何量測奈米線上的局域溫度。我會先介紹我的實驗原理和方法。並得到矽奈米線、氮化矽微米桿、矽鍺奈米線和單壁奈米碳管的溫度與位置的關係。
  在論文的第四部分,我從第三部分得到溫度的原理與方法衍生得到奈米線上的局部電壓,並同時得到奈米線的熱傳導與熱電性質。但是由於元件的短路,因此我無法在實驗上測得矽奈米線的熱電性質。
  論文的第五部份,我將會總結我的工作,並且討論運用此方法,將發射源改成雷射光,而能夠得到雷射光加熱奈米線時的局域溫度。
zh_TW
dc.description.abstractIn this thesis, I propose an experimental method to measure local temperature and voltage at different positions of various nanowires, and the associated transport properties. I demonstrate its feasibility by employing an electron beam heating method of a scanning electron microscope.
  In the first part of the thesis, I will briefly introduce the background and motivation of my research topic.
  In the second part of the thesis, I will introduce some of the equipment and preparations I have used in the experiment, including the scanning electron microscope, lock-in amplifiers, and how to measure temperature coefficients of our devices. In addition, I have designed a device that enables periodically heating a nanowire without introducing much noise. Then I have employed a lock-in amplifier to detect its signal.
  In the third part of the thesis, I will discuss how to measure the local temperature on the nanowire. I will first introduce my experimental principles and methods. Then I experimentally obtain the position-dependent temperatures and length-dependent thermal conductivities of silicon nanowires, silicon nitride microbeam, silicon germanium nanowires and single-walled carbon nanotubes.
  In the fourth part of the thesis, I further devise a method for obtaining local voltage on a nanowire from the principles and methods described in the third part. Unfortunately, experimentally obtaining thermoelectric properties of a Si nanowire has failed due to a short circuit of the device.
  In the fifth part of the thesis, I will summarize my works and discuss future experiments in applying this method to determine local temperatures of a nanomaterial under laser heating.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:13:52Z (GMT). No. of bitstreams: 1
ntu-109-R05222036-1.pdf: 6775977 bytes, checksum: 56cd0036854827bcc3de35c181b8ada6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝辭 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Experimental preparation and techniques 4
2.1 Scanning Electron Microscope and Lock-in Amplifier 4
2.2 A Device that enables Periodically Heating a Nanowire 6
2.3 Temperature Coefficient and Thermal Conductivity of Heater/Sensor 7
Chapter 3 Local Temperatures and Length Dependent Thermal Resistance of Nanowires 13
3.1 Experimental principle 13
3.2 Result and Discussion 17
3.2.1 Silicon(Si) Nanowire (control experiment) 17
3.2.2 Silicon Nitride (SiNx) microbeam 21
3.2.3 Silicon Germanium(SiGe) Nanowire 26
3.2.4 Single-Wall Carbon NanoTubes(SWCNT) 33
3.3 Summary 39
Chapter 4 Local Voltages and their associated transport properties 40
4.1 Introduction 40
4.2 Experimental Method 41
4.3 Result and Discussion 43
4.4 Summary 45
Chapter 5 Summary 46
REFERENCE 47
dc.language.isoen
dc.subject奈米線zh_TW
dc.subject熱電效應zh_TW
dc.subject熱導率zh_TW
dc.subject局部電壓zh_TW
dc.subject局部溫度zh_TW
dc.subject奈米碳管zh_TW
dc.subjectNanowireen
dc.subjectNanotubeen
dc.subjectLocal temperatureen
dc.subjectLocal voltageen
dc.subjectThermal conductivityen
dc.subjectThermoelectric effecten
dc.title量測奈米材料的局域溫度與電壓及相關的傳輸性質zh_TW
dc.titleProbing local temperatures and voltages of nanomaterials
and their associated transport properties
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee呂明璋(Ming-Chang Lu)
dc.subject.keyword奈米線,奈米碳管,局部溫度,局部電壓,熱導率,熱電效應,zh_TW
dc.subject.keywordNanowire,Nanotube,Local temperature,Local voltage,Thermal conductivity,Thermoelectric effect,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201904347
dc.rights.note有償授權
dc.date.accepted2020-02-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-109-1.pdf
  Restricted Access
6.62 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved