Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鏡堂(Jing-Tang Yang)
dc.contributor.authorSheng-Chun Linen
dc.contributor.author林聖群zh_TW
dc.date.accessioned2021-06-17T00:13:36Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-03
dc.identifier.citation[1] W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, 'Small-scale soft-bodied robot with multimodal locomotion,' Nature, vol. 554, no. 7690, pp. 81-85, 2018.
[2] Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, 'Printing ferromagnetic domains for untethered fast-transforming soft materials,' Nature, vol. 558, no. 7709, pp. 274-279, 2018.
[3] K. Kobayashi, S. H. Oh, C. Yoon, and D. H. Gracias, 'Multitemperature Responsive Self‐Folding Soft Biomimetic Structures,' Macromolecular rapid communications, vol. 39, no. 4, p. 1700692, 2018.
[4] B. Xu et al., 'A Remotely Controlled Transformable Soft Robot Based on Engineered Cardiac Tissue Construct,' Small, vol. 15, no. 18, p. 1900006, 2019.
[5] B. Esteban-Fernández de Ávila et al., 'Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins,' vol. 3, no. 18, p. eaat0485, 2018.
[6] V. Magdanz, M. Guix, F. Hebenstreit, and O. G. Schmidt, 'Dynamic Polymeric Microtubes for the Remote-Controlled Capture, Guidance, and Release of Sperm Cells,' vol. 28, no. 21, pp. 4084-4089, 2016.
[7] C. L. Randall, T. G. Leong, N. Bassik, and D. H. J. A. d. d. r. Gracias, '3D lithographically fabricated nanoliter containers for drug delivery,' vol. 59, no. 15, pp. 1547-1561, 2007.
[8] L. Ricotti et al., 'Biohybrid actuators for robotics: A review of devices actuated by living cells,' vol. 2, no. 12, p. eaaq0495, 2017.
[9] S.-J. Park et al., 'Phototactic guidance of a tissue-engineered soft-robotic ray,' (in eng), Science (New York, N.Y.), vol. 353, no. 6295, pp. 158-162, 2016.
[10] A. W. Feinberg, A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker, 'Muscular thin films for building actuators and powering devices,' (in eng), Science, vol. 317, no. 5843, pp. 1366-70, Sep 7 2007.
[11] C. Cvetkovic et al., 'Three-dimensionally printed biological machines powered by skeletal muscle,' vol. 111, no. 28, pp. 10125-10130, 2014.
[12] Y. Sun, R. Duffy, A. Lee, and A. W. Feinberg, 'Optimizing the structure and contractility of engineered skeletal muscle thin films,' (in eng), Acta Biomater, vol. 9, no. 8, pp. 7885-94, Aug 2013.
[13] Z. Zhao, J. Wu, X. Mu, H. Chen, H. J. Qi, and D. Fang, 'Origami by frontal photopolymerization,' Science advances, vol. 3, no. 4, p. e1602326, 2017.
[14] M.-Y. Chiang, Y.-W. Hsu, H.-Y. Hsieh, S.-Y. Chen, and S.-K. Fan, 'Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels,' Science advances, vol. 2, no. 10, p. e1600964, 2016.
[15] S. Tasoglu, U. A. Gurkan, S. Wang, and U. J. C. S. R. Demirci, 'Manipulating biological agents and cells in micro-scale volumes for applications in medicine,' vol. 42, no. 13, pp. 5788-5808, 2013.
[16] N. Ashammakhi et al., 'Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs,' p. 100008, 2019.
[17] S. Cheng et al., 'Self-Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation,' vol. 29, no. 28, p. 1700171, 2017.
[18] M. Jamal, N. Bassik, J.-H. Cho, C. L. Randall, and D. H. J. B. Gracias, 'Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds,' vol. 31, no. 7, pp. 1683-1690, 2010.
[19] M. Jamal et al., 'Bio‐origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,' vol. 2, no. 8, pp. 1142-1150, 2013.
[20] S. Y. Heo et al., 'Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy,' vol. 10, no. 470, p. eaau1643, 2018.
[21] J. Kim et al., 'Miniaturized Flexible Electronic Systems with Wireless Power and Near-Field Communication Capabilities,' vol. 25, no. 30, pp. 4761-4767, 2015.
[22] S. Fusco et al., 'An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions,' vol. 26, no. 6, pp. 952-957, 2014.
[23] A. M. Abdullah, X. Li, P. V. Braun, J. A. Rogers, and K. J. Hsia, 'Self-Folded Gripper-Like Architectures from Stimuli-Responsive Bilayers,' vol. 30, no. 31, p. 1801669, 2018.
[24] G. Chen et al., 'Regioselective surface encoding of nanoparticles for programmable self-assembly,' vol. 18, no. 2, pp. 169-174, 2019.
[25] Z. Lao et al., 'Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,' vol. 9, no. 12, pp. 12060-12069, 2015.
[26] C. Liu, J. Schauff, D. Joung, and J.-H. Cho, 'Remotely Controlled Microscale 3D Self-Assembly Using Microwave Energy,' vol. 2, no. 8, p. 1700035, 2017.
[27] D. Davis, R. Mailen, J. Genzer, and M. D. J. R. A. Dickey, 'Self-folding of polymer sheets using microwaves and graphene ink,' vol. 5, no. 108, pp. 89254-89261, 2015.
[28] Y. Liu, B. Shaw, M. D. Dickey, and J. J. S. A. Genzer, 'Sequential self-folding of polymer sheets,' vol. 3, no. 3, p. e1602417, 2017.
[29] T. a. Asoh, M. Matsusaki, T. Kaneko, and M. J. A. M. Akashi, 'Fabrication of Temperature‐Responsive Bending Hydrogels with a Nanostructured Gradient,' vol. 20, no. 11, pp. 2080-2083, 2008.
[30] R. Luo, J. Wu, N. D. Dinh, and C. H. J. A. F. M. Chen, 'Gradient porous elastic hydrogels with shape‐memory property and anisotropic responses for programmable locomotion,' vol. 25, no. 47, pp. 7272-7279, 2015.
[31] Y. Tan et al., 'A Fast, Reversible, and Robust Gradient Nanocomposite Hydrogel Actuator with Water‐Promoted Thermal Response,' vol. 39, no. 8, p. 1700863, 2018.
[32] L. Ricotti et al., 'Biohybrid actuators for robotics: A review of devices actuated by living cells,' vol. 2, no. 12, p. eaaq0495, 2017.
[33] L. Altomare, M. Riehle, N. Gadegaard, M. Tanzi, and S. J. T. I. j. o. a. o. Farè, 'Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation,' vol. 33, no. 8, pp. 535-543, 2010.
[34] H. Aubin et al., 'Directed 3D cell alignment and elongation in microengineered hydrogels,' vol. 31, no. 27, pp. 6941-6951, 2010.
[35] P. Bajaj et al., 'Patterning the differentiation of C2C12 skeletal myoblasts,' vol. 3, no. 9, pp. 897-909, 2011.
[36] V. Hosseini et al., 'Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate,' vol. 18, no. 23-24, pp. 2453-2465, 2012.
[37] K. Nagamine, T. Kawashima, S. Sekine, Y. Ido, M. Kanzaki, and M. J. L. o. a. c. Nishizawa, 'Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet,' vol. 11, no. 3, pp. 513-517, 2011.
[38] Y. Sun, R. Duffy, A. Lee, and A. W. J. A. b. Feinberg, 'Optimizing the structure and contractility of engineered skeletal muscle thin films,' vol. 9, no. 8, pp. 7885-7894, 2013.
[39] C. G. Anene-Nzelu et al., 'Scalable alignment of three-dimensional cellular constructs in a microfluidic chip,' vol. 13, no. 20, pp. 4124-4133, 2013.
[40] H. Fujita, K. Shimizu, E. J. B. Nagamori, and bioengineering, 'Novel method for measuring active tension generation by C2C12 myotube using UV‐crosslinked collagen film,' vol. 106, no. 3, pp. 482-489, 2010.
[41] A. Bandiera, P. Lorenzon, and P. D’Andrea, 'Biomimetic poypeptides: a new strategy for muscle tissue regeneration,' EUT Edizioni Università di Trieste, 2014.
[42] Y. Morimoto, K. Kuribayashi-Shigetomi, and S. Takeuchi, 'Biohybrid muscle fibers integrated in a three-dimensional cellular construct,' in Proc. of the 16th International Conference on Miniaturized Systems for Chemistry and Life Science, 2012, pp. 1645-1647.
[43] J. Kim et al., 'Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,' vol. 2, no. 8, p. e1600418, 2016.
[44] F. Mugele and J.-C. J. J. o. p. c. m. Baret, 'Electrowetting: from basics to applications,' vol. 17, no. 28, p. R705, 2005.
[45] T. Young, 'III. An essay on the cohesion of fluids,' vol. 95, pp. 65-87, 1805.
[46] G. Lippmann, 'Relations entre les phénomènes électriques et capillaires,' Gauthier-Villars Paris, France:, 1875.
[47] H. Moon, S. K. Cho, R. L. Garrell, and C.-J. C. Kim, 'Low voltage electrowetting-on-dielectric,' vol. 92, no. 7, pp. 4080-4087, 2002.
[48] L. W. Schwartz, S. J. J. o. c. Garoff, and i. science, 'Contact angle hysteresis and the shape of the three-phase line,' vol. 106, no. 2, pp. 422-437, 1985.
[49] H. J. C. S. A. S. Pellat, 'Force agissant á la surface de séparation de deux diélectriques,' vol. 119, pp. 675-678, 1894.
[50] T. J. J. o. E. Jones, 'Liquid dielectrophoresis on the microscale,' vol. 51, pp. 290-299, 2001.
[51] S.-K. Fan, W.-J. Chen, T.-H. Lin, T.-T. Wang, and Y.-C. J. L. o. a. C. Lin, 'Reconfigurable liquid pumping in electric-field-defined virtual microchannels by dielectrophoresis,' vol. 9, no. 11, pp. 1590-1595, 2009.
[52] H. A. Pohl, Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields (Cambridge Monographs on physics). Cambridge/New York: Cambridge University Press, 1978.
[53] G. Medoro, R. Guerrieri, N. Manaresi, C. Nastruzzi, R. J. I. D. Gambari, and T. o. Computers, 'Lab on a chip for live-cell manipulation,' vol. 24, no. 1, pp. 26-36, 2007.
[54] T. B. Jones and T. B. Jones, Electromechanics of particles. Cambridge University Press, 2005.
[55] S.-K. Fan, P.-W. Huang, T.-T. Wang, and Y.-H. J. L. o. a. C. Peng, 'Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting,' vol. 8, no. 8, pp. 1325-1331, 2008.
[56] J. A. J. N. D. w. P. Pojman, 'Frontal polymerization,' 2010.
[57] Y. A. Chekanov and J. A. J. J. o. a. p. s. Pojman, 'Preparation of functionally gradient materials via frontal polymerization,' vol. 78, no. 13, pp. 2398-2404, 2000.
[58] C. Nason, T. Roper, C. Hoyle, and J. A. J. M. Pojman, 'UV-Induced frontal polymerization of multifunctional (meth) acrylates,' vol. 38, no. 13, pp. 5506-5512, 2005.
[59] R. J. M. T. R. Minihold, 'Near field communication (nfc) technology and measurements,' 2011.
[60] V. Coskun, B. Ozdenizci, and K. J. W. p. c. Ok, 'A survey on near field communication (NFC) technology,' vol. 71, no. 3, pp. 2259-2294, 2013.
[61] D. Gawlitta, K. J. Boonen, C. W. Oomens, F. P. Baaijens, and C. V. J. T. E. P. A. Bouten, 'The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model,' vol. 14, no. 1, pp. 161-171, 2008.
[62] M. A. Lawson and P. P. J. C. T. O. Purslow, 'Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific,' vol. 167, no. 2-3, pp. 130-137, 2000.
[63] R. Conejo, A. M. Valverde, M. Benito, and M. J. J. o. c. p. Lorenzo, 'Insulin produces myogenesis in C2C12 myoblasts by induction of NF‐κB and downregulation of AP‐1 activities,' vol. 186, no. 1, pp. 82-94, 2001.
[64] H. H. Vandenburgh, P. Karlisch, J. Shansky, and R. J. A. J. o. P.-C. P. Feldstein, 'Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture,' vol. 260, no. 3, pp. C475-C484, 1991.
[65] K.-i. Yamasaki et al., 'Control of myotube contraction using electrical pulse stimulation for bio-actuator,' vol. 12, no. 2, pp. 131-137, 2009.
[66] H. J. Yoon et al., 'Cold water fish gelatin methacryloyl hydrogel for tissue engineering application,' vol. 11, no. 10, p. e0163902, 2016.
[67] F. Tan, X. Xu, T. Deng, M. Yin, X. Zhang, and J. J. B. m. Wang, 'Fabrication of positively charged poly (ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold,' vol. 7, no. 5, p. 055009, 2012.
[68] P. Bajaj, J. A. Rivera, D. Marchwiany, V. Solovyeva, and R. J. A. h. m. Bashir, 'Graphene‐based patterning and differentiation of C2C12 myoblasts,' vol. 3, no. 7, pp. 995-1000, 2014.
[69] 蔡定洋, '電控微流體平臺建構具顆粒之水膠用以熱與光驅動可逆可編程之四維形狀變形,' 2019.
[70] J. H. Kim, G. H. Lee, J. B. Kim, and S.-H. Kim, 'Macroporous Hydrogels for Fast and Reversible Switching between Transparent and Structurally Colored States,' vol. 30, no. 22, p. 2001318, 2020.
[71] J. Jia et al., 'Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications,' vol. 45, pp. 110-120, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65849-
dc.description.abstract能夠隨時間做四維形狀變形(4D shape morphing)的機制其廣泛展現在不同領域中,像是軟性機器人與生物合成致動器,各團隊利用獨有的技術讓材料本身產生對外在環境的響應,或是透過刺激生物組織讓其所依附的基材變形。因此,本研究提出以正向光聚合摺紙技術為結構本體,並透過依附在其上方,可經電刺激收縮的肌肉組織來控制這個水膠摺紙結構。我們驗證以PEGDA700水膠所製作的正向光聚合摺紙,是否能夠在液相環境中對溫度產生自折疊的響應,並對有光交聯梯度的結構產生異相的脫水反應進行確認及優化。而為了達到可以用遠程照光的方式,對帶有不同光吸收劑的水膠摺紙結構進行可編程的折疊,因此本研究測試在水膠中加入不同光譜的光吸收劑,而因為水膠摺疊結構的成形為紫外光固化,因此觀察不同濃度且不同光譜的光吸收劑,在不同曝光能量下的成形後,其對所能呈現出的彎折效果進行討論。此外,本研究透過適當的架設,結合電控微流體平台與正向光聚合摺紙兩者的技術,製作出複雜且具編碼粒子的異質水膠摺紙。本研究也嘗試在水膠摺紙結構上貼附分化後能以電刺激產生收縮力的骨骼肌肌肉組織,試著排列成長中的肌小管,將包埋骨骼肌母細胞的GelMA水膠進行排列,以增加分化後的肌小管成形,最後也透過免疫螢光染色來確認其形態,說明電刺激後細胞的收縮表現。在未來,本研究的摺紙結構可以與能夠由NFC讀取器控制的NFC芯片的柔性電路板集成在一起,以感應產生的電驅動附著在水膠摺紙結構上的肌肉細胞。zh_TW
dc.description.abstractThe mechanism of 4D shape morphing over time has been studied in different fields. For example, various technologies have been investigated to build soft robots and biosynthetic actuators based on materials responding to the external environment or addressable biological tissues attaching on deformable structures. Here we constructed a hydrogel origami with frontal photopolymerization technology and controlled it with biohybrid power with attached muscle tissues contracted by electrical stimulations. We verified the fabrication of PEGDA700 origami with frontal photopolymerization and tested folding at varied environment temperature in the liquid phase. We confirmed and optimized the folding on the structures with photocrosslinking gradients. To achieve the goal of driving the origami with light illumination, different photoabsorbers were tested for driving with various spectrums. The bending angle of the test hinges containing photoabsorbers with different concentrations driven with different spectrums under different exposure energy were discussed. In addition, an electromicrofluidic platform was combined with frontal photopolymerization to produce complex heterogeneous hydrogel origami structures with programmable embedded particles. We also tried to adhere differentiated skeletal muscle tissues to generate contraction force by electrical stimulation on the hydrogel origami structure. We attempted to arrange the growing myotubes through arranging skeletal myoblasts in GelMA hydrogels to increase the formation of myotubes after differentiation and thereby to increase the contractility. The morphology of myotubes after culturing was confirmed by immunofluorescence staining, explaining the contractility of cells after electrical stimulation. In the future, our origami structure can be integrated with a flexible circuit board containing an NFC chip controlled by a reader to electrically drive the muscle cells attached on hydrogel origami structures.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:13:36Z (GMT). No. of bitstreams: 1
U0001-0202202114550700.pdf: 5826641 bytes, checksum: 4ce3d53514d869b14f12e0440454fc50 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1 四維形狀變形 3
1-2-2 以心肌組織合成之致動器 10
1-2-3 以骨骼肌組織合成之致動器 14
1-2-4骨骼肌合成致動器之訊號源設計 16
1-2-5以近場通訊作為電訊號來源及其他應用 18
1-3 目的與研究方法 21
第二章 電控微流體、正向光聚合與近場通訊技術 22
2-1 介電濕潤理論 22
2-2 介電泳 23
2-2-1 液體介電泳 24
2-2-2 粒子介電泳 25
2-3 電控微流體平台之技術與應用 27
2-5 近場通訊的通用規則 31
第三章 實驗系統與材料介紹 34
3-1 電控微流體晶片製程 34
3-1-1 清洗玻璃基板 34
3-1-2 蒸鍍光阻貼附層 34
3-1-3 旋轉塗佈正光阻 35
3-1-4透過曝光、顯影及定影圖案化光阻 35
3-1-5 濕蝕刻氧化銦錫導電層 35
3-1-6 旋轉塗佈介電層 36
3-1-7 旋轉塗佈疏水層 36
3-2 電控微流體平台系統 37
3-2-1 控制系統 37
3-2-2 電極圖案設計 38
3-3 電控微流體平台系統結合紫外光投影機 40
3-4細胞培養系統及相關實驗設備與材料 42
3-4-1細胞培養設備 42
3-4-2小鼠骨骼肌纖維母細胞培養與操作 43
3-4-3 水膠材料 46
3-5 用於電刺激的NFC軟性電路板設計 51
第四章 實驗與結果討論 54
4-1 水膠摺紙結構在不同外在環境中隨溫度致動的討論 54
4-1-1 水膠摺紙結構在水中隨溫度致動 54
4-1-2 水膠摺紙結構在甘油中隨溫度致動的討論 58
4-2 摺疊處的截面結構討論 60
4-3 不同光吸收劑對摺疊效果之影響 62
4-4 結合電控微流體平台與正向光聚合技術的異質水膠摺紙 66
4-5不同分子量的PEGDA對摺疊效果的影響 73
4-6 以貼附骨骼肌細胞進行電刺激驅動水膠摺紙結構 74
4-6-1電刺激無排列含C2C12的Gel-MA於水膠摺紙結構 74
4-6-2電刺激排列條狀含C2C12的GelMA於水膠摺紙結構 76
4-6-3免疫螢光染色分化後條狀GelMA內的肌小管 80
4-7測試遠程驅控的可行性 82
第五章 結論與未來展望 84
5-1 結論 84
5-2 未來展望 85
參考文獻 86
dc.language.isozh-TW
dc.subject近場通訊zh_TW
dc.subject熱與光驅控zh_TW
dc.subjectC2C12zh_TW
dc.subject異向性膨脹zh_TW
dc.subject異質水膠結構zh_TW
dc.subject四維形狀變形zh_TW
dc.subject生物合成致動器zh_TW
dc.subjectheat and light drivingen
dc.subjectbiohybrid actuatoren
dc.subjectnear-field communicationen
dc.subjectC2C12en
dc.subjectanisotropic swellingen
dc.subjectheterogeneous hydrogel structureen
dc.subject4D shape deformationen
dc.title以光聚合技術建構具生物複合動力之水膠摺疊結構zh_TW
dc.titleHydrogel Origami Structures with Biohybrid Power Using Photopolymerization
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.coadvisor范士岡(Shih-Kang Fan)
dc.contributor.oralexamcommittee盧彥文(Yen-Wen Lu)
dc.subject.keyword熱與光驅控,四維形狀變形,異質水膠結構,異向性膨脹,C2C12,近場通訊,生物合成致動器,zh_TW
dc.subject.keywordheat and light driving,4D shape deformation,heterogeneous hydrogel structure,anisotropic swelling,C2C12,near-field communication,biohybrid actuator,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202100384
dc.rights.note有償授權
dc.date.accepted2021-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0202202114550700.pdf
  未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved