請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張靜文 | |
| dc.contributor.author | Nien-Tzu Hung | en |
| dc.contributor.author | 洪念慈 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:14:56Z | - |
| dc.date.available | 2018-03-04 | |
| dc.date.available | 2021-05-17T09:14:56Z | - |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2013-01-15 | |
| dc.identifier.citation | 1. Al Bulushi, I. M., Poole, S., Deeth, H. C., Dykes, G. A.. 2008. Quantitative assessment of total and Gram-positive aerobic bacteria in fresh and ambient-temperature-stored sub-tropical marine fish. World J Microbiol Biotechnol 24:1867–1875.
2. Alvarez, A. J., Buttner, M. P., Toranzos, G. A., Dvorsky, E. A., Toro, A., Heikes, T. B. 1994. The use of solidphase polymerase chain reaction for the enhanced detection of airborne microorganisms. Applied and Environmental Microbiology 60: 374–376. 3. Angenent, L. T., Kelley, S. T., Amand, A., Pace, N. R., Mark, T., & Hernandez, M. T. 2005. Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proceedings of the National Academy of Sciences of the United States of America 102: 4860–4865. 4. Awad, A.H.A., Elmorsy, T.H., Tarwater, P. M., Green, C.F., Gibbs, S. G.. 2010. Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia. 26:223–232. 5. Bach, H.J., Tomanova, J., Schloter, M. and Munch, J. C. 2002. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. Journal of Microbiological Methods 49: 235–245. 6. Ballard, A. L., Fry, N. K., Chan, L., Surman, S. B., Lee, J. V., Harrison, T. G. and Towner, K.J. 2000. Detection of Legionella pneumophila Using a Real-Time PCR Hybridization Assay. Journal of clinical microbiology 38: 4215-4218. 7. Bauer, M., Mathieu, L. A., Deloge-Abarkan, M., Remen, T., Tossa, P., Hartemann, P., Zmirou-Navier, D. 2008. Legionella bacteria in shower aerosols increase the risk of Pontiac fever among older people in rerirement homes. J Epidemiol Community Halthy 62:913-920. 8. Becker, S., Franco, J. R., Simarro, P. P., Stich, A., Abel, P.M., Steverding, D. 2004. Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagnostic Microbiology and Infectious Disease. 50: 193–199. 9. Brescia, C. C., Griffin, S. M., Ware, M. W., Varughese, E. A., Egorov, A. I. and Villegas, E. N. 2009. Cryptosporidium propidium monoazide-PCR, a molecular biology-based technique for genotyping of viable Cryptosporidium oocysts. Appl Environ Microbiol 75: 6856-6863. 10. Bridle, A.R., Crosbie, P.B.B., Cadoret, K., Nowak, B.F. 2010. Rapid detection and quantification of Neoparamoeba perurans in the marine environment. Aquaculture 309 :56–61. 11. Buchbinder, B., Trebesius, K. and Heesemann, J. 2002. Evaluation of detection of Legionella spp. in water samples by fluorescence in situ hybridization, PCR amplification and bacterial culture. International Journal of Medical Microbiology 292: 241-245. 12. Burge, H. 1989. Airborne allergenic fungi: Classification, nomenclature and distribution. Immunology and Allergy Clinics of North America 9(2): 307–319. 13. Burrell, R. 1995. Immunotoxic reactions in the agricultural environment. Annals of Agricultural and Environmental Medicine 2(1): 11–20. 14. Chang, C. W. and Chou, F. C. 2011. Assessment of Bioaerosol Sampling Techniques for Viable Legionella pneumophila by Ethidium Monoazide Quantitative PCR. Aerosol Science and Technology 45:343–351. 15. Chang, C. W. and Hung, P. Y. 2012. Methods for Detection and Quantification of Airborne Legionellae Around Cooling Towers. Aerosol Science and Technology, 46:369–379. 16. Chang, C.W. and Wu, Y.C..2010. Evaluation of DNA extraction methods and dilution treatment for detection and quantification of Acanthamoeba in water and biofilm by real-time PCR. Water Science & Technology—WST. 2141-2149. 17. Chen, N. T. and Chang, C.W. 2010. Rapid Quantification of Viable Legionellae in Water and Biofilm Using Ethidium Monoazide Coupled with Real-Time Quantitative PCR. J. Appl. Microbiol. 109:623–634. 18. Chen, P. S. and Li, C. H. 2005. Bioaerosol characterization by flow cytometry with fluorochrome. J. Environ. Monit. 7: 950-959. 19. Chi, M. C. and Li, C. S. 2005. Fluorochrome and Fluorescent In Situ Hybridization to Monitor Bioaerosols in Swine Buildings, Aerosol Sci. Technol. 39:1101–1110. 20. Chi, M. C. and Li, C. S. 2006. Analysis of Bioaerosols from Chicken Houses by Culture and Non-culture Methods. Aerosol Sci. Technol. 40:1071–1079. 21. Chi, M. C. and Li, C. S. 2007. Fluorochrome in Monitoring Atmospheric Bioaerosols and Correlations with Meteorological Factors and Air Pollutants. Aerosol Science and Technology. 41:672–678. 22. Choi, J.H., Sohn, J.I., Lee, M., Shin, S.W., Koh, S.C.. (2003). Neural network modeling for nutrient dynamics in a recycling piggery slurry treatment system. World Journal of Microbiology & Biotechnology 19: 21–27. 23. Cohen, H.A., Liora, H., Paret, G., Lahat, E., Kennet, G., Barzilai, A. (1998). Aurioscope earpieces—a potential vector of infection?. International Journal of Pediatric Otorhinolaryngology. 45 : 47–50. 24. Cox, C.S., 1989. Airborne bacteria and viruses. Science Progress 73:469–499. 25. Crook, B., Roberston, J. F., Glass, S. A., Botheroyd, E. M., Lacey, J., and Topping, M. D. 1991. Airborne dust, ammonia, microorganisms and antigens in pig confinement houses and the respiratory health of exposed farm workers. American Industrial Hygiene Association Journal 52(7): 271–279. 26. Delgado-Viscogliosi, P., Solognac, L. & Delattre, J. M. 2009. Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples. Appl Environ Microbiol 75: 3502-3512. 27. Dutil, S., Veillette, M., Meriaux, A., Lazure, L., Barbeau, J. and Duchaine, C. 2007. Aerosolization of mycobacteria and legionellae during dental treatment: low exposure despite dental unit contamination. Environmental Microbiology 9: 2836-2843. 28. Dutkiewicz, J. 1992. Bacteria and their products as occupational allergens. Pneumonologiai Alergologia Polska 60(2): 14–21. 29. Dutkiewicz, J., Krysinska-Traczyk, E., Shorska, C., Sitkowska, J., Prazmo, Z., & Urbanowicz, B. 2000. Exposure of agricultural workers to airborne microorganisms and endotoxin during handling of various vegetable products. Aerobiologia 16: 193–198. 30. Dutkiewicz, J., Skorska, C., Krysinska-Traczyk, E., Dutkiewicz, E., Matuszyk, A., Sitkowska, J.. 2001. Response of sawmill workers to work-related airborne allergens. Ann Agric Environ Med 8: 81–90. 31. Eduard, W., Heederik, D., Duchaine, C. and Green, B. J. 1990. Bioaerosol exposure assessment in the workplace: the past, present and recent advances. J. Environ. Monit 14: 334-339. 32. Esteve, C., Alcaide, E.. (2009). Influence of diseases on the wild eel stock: The case of Albufera Lake. Aquaculture 289 : 143–149. 33. Flekna, G., Stefanic, P., Wagner, M., Smulders, F. J., Mozina, S. S. and Hein, I. 2007. Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res Microbiol 158: 405-412. 34. Fittipaldi, M., Rodriguez, N. J., Codony, F., Adrados, B., Penuela, G. A. and Morato, J. 2010. Discrimination of infectious bacteriophage T4 virus by propidium monoazide real-time PCR. J Virol Methods 168: 228-232. 35. Fittipaldi, M. , Nocker, A. , Codony, F. 2012. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods. 91 : 276–289. 36. Gibbs, S. G., Green, C. F., Tarwater, P. M., Mota, L. C., Mena, K. D., Scarpino, P.V.. 2006. Isolation of Antibiotic-Resistant Bacteria from the Air Plume Downwind of a Swine Confined or Concentrated Animal Feeding Operation. Environmental Health Perspectives. 114: 1032-1037. 37. Gioffre, A., Marramao, A., Ianno, A. 2012. Airborne Microorganisms, Endotoxin, and Dust Concentration in Wood Factories in Italy. Ann. Occup. Hyg., Vol. 56, No. 2 :161–169. 38. Gilbert, Y. and Duchaine, C. 2009. Bioaerosols in industrial environments: a review. Can. J. Civ. Eng. 36: 1873–1886. 39. Gora, A., Mackiewicz., B., Krawczyk, P., Golec, M., Skorska , C., Sitkowska, J., Cholewa, G., Larsson, L., Jarosz, M., Fatla, A., Dutkiewicz, J. 2009. Occupational exposure to organic dust, microorganisms, endotoxin and peptidoglycan among plants processing workers in Poland. Ann Agric Environ Med 16:143-150. 40. Goto, M., Ando, S., Hachisuka,Y., Yoneyama, T.. 2005. Contamination of diverse nifH and nifH-like DNA into commercial PCR primers. FEMS Microbiology Letters. 246:33–38. 41. Halverson, L. J.,* Jones, T. M., Firestone, M. K.. 2000. Release of Intracellular Solutes by Four Soil Bacteria Exposed to Dilution Stress. Soil Sci. Soc. Am. J. 64:1630–1637. 42. Heidelberg, J. F., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C., Colwell, R., 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Applied Environmental Microbiology 63:3585–3588. 43. Hein, I., Schneeweiss, W., Stanek, C. and Wagner, M. 2007 Ethidium monoazide and propidium monoazide for elimination of unspecific DNA background in quantitative universal real-time PCR. J Microbiol Methods 71: 336-339. 44. Henningson, E. W., Lundquist, M., Larsson, E., Sandstriim, G. and Forsman, M. 1997. A comparative study of different methods to determine the total number and the survival ratio of bacteria in aerobiological samples. Aerosol Sci. 28(3):459-469. 45. Herman, L., 1997. Detection of viable and dead Listeria monocytogenes by PCR. Food Microbiol. 14:103–110. 46. Hill, M., and Goldspink, G. 2003. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549.(2) : 409–418. 47. Inglis, G. D., and Kalischuk, L.D.. 2004. Direct Quantification of Campylobacter jejuni and Campylobacter lanienae in Feces of Cattle by Real-Time Quantitative PCR. Applied and Environmental Microbiology. 70: 2296–2306 48. Inoue, D., Tsutsui, H., Yamazaki, Y., Sei, K., Soda, S., Fujita, M. and Ike, M. 2008 Application of real-time polymerase chain reaction (PCR) coupled with ethidium monoazide treatment for selective quantification of viable bacteria in aquatic environment. Water Sci Technol 58: 1107-1112. 49. Jung, M.Y., Chang, Y.. and Kim, W.. 2010. A real-time PCR assay for detection and quantification of Lactococcus garvieae. Journal of Applied Microbiology. 108: 1694–1701. 50. Kuiper, M. W., Valster, R. M., Wullings, B.A., Boonstra, H., Smidt, H., and Kooij, D. 2006. Quantitative Detection of the Free-Living Amoeba Hartmannella vermiformis in Surface Water by Using Real-Time PCR. Applied and Environmental Microbiology. 72: 5750–5756. 51. Kobayashi, H., Oethinger, M., Tuohy, M. J., Hall, G. S. and Bauer, T. W. 2009 a. Unsuitable distinction between viable and dead Staphylococcus aureus and Staphylococcus epidermidis by ethidium bromide monoazide. Letters in Applied Microbiology 48: 633–638. 52. Kobayashi, H., Oethinger, M., Tuohy, M. J., Hall, G. S. and Bauer, T. W. 2009 b. Improving clinical significance of PCR: use of propidium monoazide to distinguish viable from dead Staphylococcus aureus and Staphylococcus epidermidis. J Orthop Res 27: 1243-1247. 53. Kralik, P., Nocker, A. and Pavlik, I. 2010. Mycobacterium avium subsp. paratuberculosis viability determination using F57quantitative PCR in combination with propidium monoazide treatment. Int J Food Microbiol 141 Suppl 1: S80-86. 54. Kulakov, L.A., McAlister, M.B., Ogden, K. L., Larkin, M. J., and O’Hanlon, J.F. 2002. Analysis of Bacteria Contaminating Ultrapure Water in Industrial Systems. Applied and Environmental Microbiology. 68: . 1548–1555. 55. Lee, J. L. and Levin, R. E. 2010 Selective Detection of Mixed Bacterial Survivors from Fish Fillets after Freezing and Thawing by Ethidium Bromide Monoazide Real-Time PCR. Food Biotechnology. 24:270–281. 56. Lee, J. L. and Levin, R. E. 2009. A comparative study of the ability of EMA and PMA to distinguish viable from heat killed mixed bacterial flora from fish fillets. Journal of Microbiological Methods. 76:93–96. 57. Lee, J. L. and Levin, R. E. 2007. Quantification of total viable bacteria on fish fillets by using ethidium bromide monoazide real-time polymerase chain reaction. International Journal of Food Microbiology 118;312–317. 58. Lee, J. L. and Levin, R. E. 2006. Use of ethidium bromide monoazide for quantification of viable and dead mixed bacterial flora from fish fillets by polymerase chain reaction. Journal of Microbiological Methods 67: 456–462. 59. Li, K., Dong, S., Wu, Y. and Yao, M. 2010. Comparison of the biological content of air samples collected at ground level and at higher elevation. Aerobiologia 26: 122-144. 60. Liu, H. M., Lin, Y. H., Tsai, M. Y. and Lin, W. H. 2010. Occurrence and characterization of culturable bacteria and fungi in metalworking environments. Aerobiologia 26:339–350. 61. Lyons, S. R., Griffen, A. N. & Leys, E. J. 2000. Quantitative realtime PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol 38: 2362-2365. 62. Mackiewicz, B. 1998. Study on exposure of pig farm workers to bioaerosols, immunologic reactivity and health effects. Annals of Agricultural and Environmental Medicine 5: 169–175. 63. Mathieu, L., Robine, E., Deloge-Abarkan, M., Ritoux, S., Pauly, D., Hartemann, P. and Zmirou-Navier, D. 2006. Legionella bacteria in aerosols: sampling and analytical approaches used during the Legionnaires disease outbreak in Pas-de-Calais. The Journal of Infectious Diseases 193:1333–1335. 64. Matković, K., Vučemilo, M., Vinković, B., Šeol, B., Pavičić, Ž., Matković, S.. 2007. Qualitative structure of airborne bacteria and fungi in dairy barn and nearby environment. Czech J. Anim. Sci., 52, 2007 (8): 249–254. 65. Martin, E., Klug, K., Frischmann, A., Busse, H. J., Ka‥mpfer, P., Ja‥ ckel, U.. 2011. Jeotgalicoccus coquinae sp. nov. and Jeotgalicoccus aerolatus sp. nov., isolated from poultry houses. International Journal of Systematic and Evolutionary Microbiology. 61: 237–241. 66. McCaig, A. E., Grayston, S. J., Prosser, J. I., Glover, L. A.. 2001. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiology Ecology 35: 37-48. 67. Medrano, E.G., , Bell, A.A. 2007. Role of Pantoea agglomerans in opportunistic bacterial seed and boll rot of cotton (Gossypium hirsutum) grown in the field. Journal of Applied Microbiology. 102 :134–143. 68. Nadkarni, M. A., Martin, F. E., Jacques, N. A. and Hunter, N. 2002. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148: 257–266. 69. Nocker, A. and Camper, A. K. 2006. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72: 1997-2004. 70. Nocker, A., Cheung, C. Y. and Camper, A. K. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67: 310-320. 71. Nocker, A., Sossa, K. E. and Camper, A. K. 2007. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 70: 252-260. 72. Nocker, A., Mazza, A., Masson, L., Camper, A. K. and Brousseau, R. 2009. Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology. J Microbiol Methods 76: 253-261. 73. Nogva, H. K., Dromtorp, S. M., Nissen, H. and Rudi, K. 2003. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5’-nuclease PCR. Biotechniques 34: 804-808, 810, 812-803. 74. Oliver, J. and Bockian, R. 1995. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of vibrio vulnificus. Applied and environmental microbiology 61: 2620–2623 75. Olsson, M., Lidman, C., Latouche, S., Bjo‥rkman, A., Roux, P., Linder, E., et al. 1998. Identification of Pneumocystis cariniif. sp. hominis gene sequences in filtered air in hospital environments. Journal of Clinical Microbiology 36: 1737–1740. 76. Ongol, M. P., Tanaka, M., Sone, T., Asano, K.. 2009. A real-time PCR method targeting a gene sequence encoding 16S rRNA processing protein, rimM, for detection and enumeration of Streptococcus thermophilus in dairy products. Food Research International. 42 :893–898. 77. Oppliger, A., Charrie N., Droz, P. O., Rinsoz, T..2008. Exposure to Bioaerosols in Poultry Houses at Different Stages of Fattening; Use of Real-time PCR for Airborne Bacterial Quantification. Ann. Occup. Hyg. 52: No. 5, 405–412. 78. Oppliger, A., Rusca, S., Charriere, N., Duc, T.V., Droz, P.O.. 2005. Assessment of Bioaerosols and Inhalable Dust Exposure in Swiss Sawmills. Ann. occup. Hyg., Vol. 49, No. 5, 385–391. 79. Pan, Y. and Breidt, J. F. 2007. Enumeration of Viable Listeria monocytogenes Cells by Real-Time PCR with Propidium Monoazide and Ethidium Monoazide in the Presence of Dead Cells. Applied and Environmental Microbiology.73: 8028–8031. 80. Pilar, D. V.,* L, S. and Delattre J. M. 2009. Viability PCR, a Culture-Independent Method for Rapid and Selective Quantification of Viable Legionella pneumophila Cells in Environmental Water Samples. Appled and environmental microbiology. 75: 3502–3512. 81. Rinsoz, T., Duquenne, P., Guylaine G.M., Oppliger, A. 2008. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods. Atmospheric Environment 42 :6767–6774. 82. Rudi, K., Moen B., Dromtorp S. M., and Holck A. L. 2005. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Applied and environmental microbiology 71:1018–1024. 83. Rudi, K., Naterstad, K., Dromtorp, S. M. and Holo, H. 2005. Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR. Lett Appl Microbiol 40: 301-306. 84. Safatov, A. S., Andreeva, I. S., Belan, B. D., Buryak, G. A., Emelyanova, E. K., Jaenicke, R., Panchenko, M. V., Pechurkina, N. I., Puchkova, L. I., Repin, V. E., Saranina, I. V. and Sergeev, A. N. 2008. To What Extent Can Viable Bacteria in Atmospheric Aerosols be Dangerous for Humans? Clean 36 (7): 564 – 571. 85. Sarter, S., Kha Nguyen, H. N., Hung, L. T., Lazard, J., Montet, D.. 2007. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control 18: 1391–1396. 86. Sawyer, M. H., Chamberlain, C. J., Wu, Y. N., Aintablian, N., & Wallace, M. R. 1994. Detection of Varicella-Zoster virus DNA in air samples from hospital rooms. Journal of Infectious Diseases 169: 91–94. 87. Sheridan, G.E., Masters, C.I., Shallcross, J.A., MacKey, B.M., 1998. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64: 1313–1318. 88. Singh, A., and Singh, A. B. 1994. Airborne fungi in a bakery and the prevalence of respiratory dysfunction among workers. Grana 33: 349–358. 89. Skorska, C., Sitkowska, J., Krysińska-Traczyk, E., Cholewa, G., Dutkiewicz, J. 2005. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms. Ann Agric Environ Med 12: 281-288. 90. Spanggaard, B., Huber, I., Nielsen, J., Nielsen, T., Appel, K.F., Gram, L.. 2000. The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182 : 1–15. 91. Straka, R. P., Stokes, J. L.. 1959. Metabolic Injury to Bacteria at Low Temperatures. Journal of bacteriology: 78(2):181-185. 92. Su, Xiaowei., D’Souza, D. H.. 2012. Reduction of Salmonella Typhimurium and Listeria monocytogenes on produce by trisodium phosphate. LWT - Food Science and Technology 45 :221-225. 93. Surekha, M., Krishnareddi, V., & Reddi, S. M. 1996. Aeromycoflora of poultry shed in relation to incidence of mycotoxigenic fungi. Journal of Palynology 32: 135–141. 94. Tomazetto, G., Mulinari, F., Staniscuaski, F., Settembrini, B., Carlini, C. R., Marco Antonio Zachia Ayub. 2007. Expression kinetics and plasmid stability of recombinant E. coli encoding urease-derived peptide with bioinsecticide activity. Enzyme and Microbial Technology 41:821–827. 95. Vesper, S., McKinstryb, C., Hartmannc, C., Neaced, M., Yoderd, S., Vespere, A. 2008. Quantifying fungal viability in air and waters amples using quantitative PCR after treatment with propidium monoazide (PMA). Journal of Microbiological Methods 72: 180–184. 96. Varma, M., Field, R., Stimson, M., Rukovets, B., Wymer, L. and Haugland, R. 2009. Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater. Water Res 43: 4790-4801. 97. Vučemilo, M., Vinković, B., Matković, K., Brezak, R.. Bioaerosol in laying hen house. ISAH-2007 Tartu, Estonia. 98. Wan, G.H., Chung, F,F., Tang, C.S.. 2011. Long-term surveillance of air quality in medical center operating rooms. American journal of infection control. 39: 302–308. 99. Wang, L. and Mustapha, A. 2010. EMA-Real-Time PCR as a Reliable Method for Detection of Viable Salmonella in Chicken and Eggs. Journal of food science. 75: M134-M139. 100. Wang, S. and Levin, R. E. 2006. Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J Microbiol Methods 64: 1-8. 101. Yanez, M. A., Nocker, A., Elena, S.S., Murtula, R., Martinez, L., a, Catalan, V. 2011. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. Journal of Microbiological Methods. 85 :124–130. 102. Yashiro, E., Spear, R.N., McManus, P.S.. 2011. Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. Journal of Applied Microbiology 110: 1284–1296. 103. Yoshie, S., Ogawa, T., Makino, H., Hirosawa, H., Tsuneda, S. and Hirata, A. 2006. Characteristics of bacteria showing high denitrification activity in saline wastewater. Letters in Applied Microbiology 42: 277–283. 104. Zehr, J.P., Crumbliss, L.L., Church, M. J., Omoregie, E.O., and Jenkins, B. D.. 2003. Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes. BioTechniques 35:996-1005. 105. Zhen, S., Li, K., Yina ,L., Yaob, M., Zhanga ,H., Chenc, L., Zhouc, M., Chenc, X., 2009. A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations. Aerosol Science 40:503 – 513. 106. Zhiping, W., Malmberg, P., Larsson, B. M., Larsson, K., Larsson, L., Saraf, A. 1996. Exposure to bacteria in swine-house dust and acute inflammatory reactions in humans. Am J Respir Crit Care Med 154: 1261-1266. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6583 | - |
| dc.description.abstract | 空氣中存在著許多對人體健康有害的物質,懸浮於空氣中的微生物 (生物氣膠 (bioaerosols))即是其中之一。近年來許多針對室內及室外作業場所生物氣膠之研究,大部分多使用培養法作為其分析環境中總細菌濃度之方法;然而已知生物氣膠具有活性但不可培養 (viable but non-culturable (VBNC))之特性,因此造成以培養法分析時低估實際暴露濃度。
本研究透過核酸染劑結合即時定量聚合酶連鎖反應 (real-time quantitative polymerase chain reaction, qPCR),建立定量空氣中活性細菌的方法。並比較不同的核酸染劑(ethidium monoazide (EMA) 及propidium monoazide (PMA))以及不同的濃度之效能、測試其線性關係範圍,並於高濃度細菌暴露之職場進行方法驗證。 於核酸染劑結合qPCR結果顯示,相較於未添加核酸染劑之對照組,加入EMA或PMA之受熱組樣本,其qPCR所得之DNA濃度顯著較低,顯示EMA與PMA皆可有效抑制受熱組細菌DNA於qPCR之放大。而於未受熱組之樣本,無EMA處理者其DNA量為6.09 log copies/μL,有EMA處理者為2.78~4.58 log copies/μL,顯示EMA會干擾活性菌定量;而另一核酸染劑PMA於未受熱組之結果,無PMA處理之DNA量為5.99 log copies/μL,而有PMA處理者為4.41~5.41 log copies/μL,其差異介於0.57~1.57 log copies/μL,顯示PMA較不會影響活性細菌之DNA於qPCR監測。而進一步觀察不同濃度核酸染劑間之反應,結果顯示濃度為1.5 μg/mL之PMA可有效抑制受熱組細菌DNA於qPCR放大,且在此濃度下,不會對活性細菌造成以qPCR定量細菌濃度之明顯干擾。因此以1.5 μg/mL PMA結合qPCR作為定量空氣中活性細菌之最佳條件。 進一步以最佳核酸染劑條件1.5 μg/mL PMA評估偵測細菌濃度範圍,結果顯示其線性範圍介於1×104 ~ 1×1010 cfu/mL (R2=0.9945)。另考慮每種細菌之copy number不同,無法直接將qPCR所得之copies數換算細菌數,因此本研究亦將四種環境地點(醫療院所、木材行、豬舍及雞舍)之樣本以qPCR分析(copies)及Baclight計數(cells)建立可適用於總細菌與活性細菌之環境檢量線,在總細菌之檢量線為Y (log cells/sample)=1.034 X (log copies/sample)-0.6278 (R2=0.9592);活性細菌之檢量線為Y (log cells/sample)=1.085 X (log copies/sample)-0.8618 (R2=0.9665),高R2顯示此兩條檢量線可做為細菌數之換算依據。最後將開發之方法應用於分析職業場所空氣採樣之樣本,其量測場所包括醫療院所、木材行、水稻田、蔬菜田、家禽舍及畜牧業,而將各地點所測得之細菌濃度以Wilcoxon signed-rank進行檢定,結果顯示五個地點之總細菌濃度皆大於活性細菌濃度(P<0.0001),活性細菌濃度亦大於可培養細菌濃度(P<0.0001),因此本研究認為以1.5 μg/mL PMA結合qPCR作為定量職業環境空氣中活性細菌是可行的分析方法。 | zh_TW |
| dc.description.abstract | Microbial contamination in air has gained particular attention primarily due to the adverse human health effects associated with bioaerosols. The recent studies on monitoring the bioaerosols in occupational settings are commonly based on the analysis with culture assay. However, it has been known that airborne bacteria may be present as viable but not culturable (VBNC) state; therefore, the quantification of airborne bacteria by culture assay may underestimate the actual exposure level.
To deal with this problem that both culture assay and qPCR may not accurately quantify the level of total viable bacteria, this study is initiated to develop a qPCR-based method coupled with nucleic acid dye (ethidium monoazide and propidium monoazide) that can exclusively quantify total viable bacterial. Different types and concentrations of nucleic acid dyes were evaluated. The most appropriate selection on nucleic acid dye was tested for the range of the detection limit, and furthermore, it was pretested in several occupational environments with the high level of total bacteria exposure. The results of qPCR-based method coupled with nucleic acid dye, for dead cells, a significant decrease of DNA concentration was observed for the heated cells pretreated with EMA or PMA as compared to untreated samples. Indicated that EMA and PMA can penetrate dead bacteria and inhibited the DNA amplification in qPCR. For live cells, untreated samples DNA concentration were 6.09 log copies/ul. EMA-treated samples were 2.78~4.58 log copies/ul, indicated that EMA can penetrated viable bacteria and decrease the viable cells concentration. For PMA, untreated samples DNA concentration were 5.99 log copies/ul. Otherwise, PMA-treated samples were 0.57~1.57 log copies/ul, there was showed no statistical significant difference in DNA concentration between PMA-treated and -untreated samples. These results demonstrated that PMA penetrated dead bacteria and inhibited the DNA amplification in qPCR, indicating that PMA coupled with qPCR is applicable to quantify the live bacteria. Moreover, the DNA concentrations measured in dead cells were independent of PMA at a concentration of 1.5 μg/mL. Thus, PMA at 1.5 μg/ml with a 20-min light exposure was considered as the most suitable for quantification and thus recommended for all the following experiments in this study. As for testing on the detection limit of the PMA-qPCR assay, a linear range was obtained for the cells from 1×104 to 1×1010 cfu/mL (R2=0.9945). To conceder bacteria have different copy number, Can’t direct use the copies number conversion bacterial number. Therefore, this study also sample four environmental (), for qPCR analysis (copies) and Baclight count (cells) to establish the applicable total bacteria and viable bacteria in environmental calibration curve. Total bacteria calibration curve was Y (log cells/sample)=1.034 X(log copies/sample)-0.6278 (R2=0.9592); for viable bacteria calibration curve was Y (log cells/sample)=1.085 X (log copies/sample)-0.8618 (R2=0.9665). Using the calibration curve to translation from copies number to cell numbers. Finally, this PMA-qPCR based methodology was used for analyzing the samples collected from the air of the workplaces including the hospital, sawmill, rice paddy fields, vegetable fields, poultry and swine, Various workplaces samples measured concentration of bacteria use the Wilcoxon signed-rank test, the results show that the concentration of total bacteria of the five sites are greater than the viable bacteria concentration (p<0.0001), viable bacteria concentration are greater than the concentration of culturable bacteria (p<0.0001). Therefore PMA-PCR assay was revealed as suitable for quantification of viable bacteria in those environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:14:56Z (GMT). No. of bitstreams: 1 ntu-101-R99841011-1.pdf: 2582167 bytes, checksum: 0e05d4b442a0273f2e624940d0faabf1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
第一章 前言 1 第二章 文獻回顧 2 2.1 空氣中活性細菌 2 2.2 空氣中活性細菌分析方法之比較 9 2.2.1 培養法 9 2.2.2 顯微鏡鏡檢法 10 2.2.3 Real-time quantitative polymerase chain reaction (qPCR) 11 2.3 核酸染劑結合聚合酶連鎖反應定量活性細菌 16 第三章 研究目的 22 第四章 研究架構 23 第五章 材料與方法 25 5.1 細菌培養液及緩衝溶液 25 5.1.1 Tryptic Soy Broth supplemented with 0.25% glucose (TSB+)培養液 25 5.1.2 Tryptic Soy Agar supplemented with 0.25% glucose (TSA+)培養基 25 5.1.3磷酸緩衝液 (phosphate buffered saline, PBS) 26 5.1.4 TE緩衝溶液 26 5.2 總細菌引子及real-time qPCR條件測試 27 5.3 培養測試之細菌群及建立生長曲線與檢量線 28 5.4 加熱處理及核酸染劑配製 29 5.4.1 以加熱法產生細胞膜受損之細菌 29 5.4.2 核酸染劑配製 29 5.5 以核酸染劑處理活性及非活性細菌 30 5.5.1 以顯微鏡搭配核酸染劑(EMA/PMA)觀察活性及非活性細菌之差異 30 5.5.2 qPCR搭配EMA/PMA於定量活性細菌之適用性與條件 31 5.5.3 qPCR搭配EMA/PMA定量活性細菌之上下限值與線性關係 32 5.5.4 DNA萃取 33 5.5.5 DNA萃取回收率 33 5.6 備製細菌DNA標準品及檢量線 36 5.7 環境檢量線建立 37 5.8 環境驗證 39 5.8.1 採樣器材 39 5.8.2 樣本運送 39 5.8.3 樣本分析 39 5.8.4 空氣中細菌濃度之計算 39 5.9 資料分析及統計分析 42 第六章 結果 43 6.1選定最佳定量總細菌之引子: 43 6.2 real-time qPCR條件測試: 47 6.3培養測試之細菌群及建立生長曲線與檢量線 52 6.4 DNA萃取回收率 53 6.5加熱法產生細胞膜受損之細菌 54 6.6 以顯微鏡搭配核酸染劑(EMA/PMA)觀察活性及非活性細菌 54 6.7 qPCR搭配EMA/PMA於定量活性細菌之適用性與其最佳條件 56 6.7.1 qPCR Performance 及QA/QC 56 6.7.2 qPCR搭配EMA/PMA 56 6.7.3 總結 61 6.8 qPCR搭配EMA/PMA定量活性細菌之上下限值與線性關係 62 6.9 環境檢量線建立 64 6.10 環境採樣與驗證 66 6.11 方法偵測下限 69 6.12 統計檢定 70 第七章 討論 73 7.1 以顯微鏡搭配核酸染劑(EMA/PMA)觀察活性及非活性細菌 73 7.2 qPCR搭配EMA/PMA於定量活性細菌之適用性與條件 75 7.3 EMA/PMA最佳條件之選定 79 7.3.1 暗反應時間 79 7.3.2 照光強度 79 7.3.3 照光時間 79 7.3.4 核酸染劑種類及最佳濃度 80 7.3.5 總結 82 7.4 PMA-qPCR定量活性細菌濃度之線性關係 86 7.5 總細菌copies與cells之相關性探討 89 7.6 NTC 之Ct 98 7.6.1 出現NTC Ct值之原因探討 98 7.6.2 解決NTC之Ct值限制 99 7.6.3 總結 100 7.8 研究限制與建議 106 第八章 結論 107 參考文獻 108 附錄 119 附錄一、總細菌偵測下限 119 附錄二、活性總細菌偵測下限 121 圖目錄 圖 1、EMA(左邊)與PMA(右邊)之化學結構(分子量分別為420.31及511) 17 圖 2、EMA(左邊)及PMA(右邊)經光照後與DNA形成之共價鍵結 17 圖 3、EMA(左邊)及PMA(右邊)經光照後與水分子結合形成羥胺 17 圖 4、EMA與PMA結合qPCR對DNA放大作用機制之影響 18 圖 5、本研究研究流程架構圖 24 圖 6、測試最佳總細菌引子對與qPCR條件之流程圖 27 圖 7、培養測試之細菌群與檢量線建立之實驗流程圖 28 圖 8、確認核酸染劑是否可分辨細菌活性之實驗流程 30 圖 9、尋找不同核酸染劑搭配qPCR之最佳處理條件 31 圖 10、最佳核酸染劑處理條件下定量活性菌之上、下限值與線性關係之流程圖 32 圖 11、DNA萃取試劑回收率之流程圖 34 圖 12、Baclight分析流程圖 35 圖 13、環境檢量線實驗流程圖 38 圖 14、以最佳分析條件定量職場空氣中細菌濃度之流程圖 40 圖 15 、環境現場採樣狀況圖示 (A)雞舍 (B)牛舍 (C)豬舍 (D)羊舍 (E)醫療院所 (F)木材行 (G)水稻田 (H)蔬菜田 41 圖 16、於10 μM引子與5 μL DNA體積下並以60°C為 Annealing溫度且Annealing與Elongation升溫速度分別為1.1與2.2 °C/s時之放大曲線圖 51 圖 17、於10 μM引子與5 μL DNA體積下並以60°C為 Annealing溫度且Annealing與Elongation升溫速度分別為1.1與2.2 °C/s時之檢量線 (R2=0.9994) 51 圖 18、培養細菌群之生長曲線(n=3) 52 圖 19、OD值與細菌濃度檢量線(n=3) 52 圖 20、DNA萃取效率 53 圖 21、以23 μg/mL EMA或PMA染色未受熱與90°C受熱20分鐘細菌並於光學顯微鏡(未受熱:A, E;受熱:C, G)與螢光顯微鏡(未受熱:B, F;受熱:D, H)下呈色結果 55 圖 22、以不同EMA濃度處置未受熱組細菌並經qPCR後所得DNA濃度(n=6,英文字母相同者代表該組間之DNA濃度未達統計顯著差異) 58 圖 23、以不同EMA濃度處置受熱組細菌並經qPCR後所得DNA濃度(n=6,英文字母相同者代表該組間之DNA濃度未達統計顯著差異) 58 圖 24、以不同PMA濃度處置未受熱組細菌並經qPCR後所得DNA濃度(n=6,英文字母相同者代表該組間之DNA濃度未達統計顯著差異) 60 圖 25、以不同PMA濃度處置受熱組細菌並經qPCR後所得DNA濃度(n=6,英文字母相同者代表該組間之DNA濃度未達統計顯著差異) 60 圖 26、qPCR搭配EMA/PMA於定量活性細菌 61 圖 27、以1.5 μg/mL PMA處理1×101 ~ 1×1010 cfu/mL未受熱組細菌(viable cells only)與含1×108 cfu/mL受熱細菌混合組 (mixture cells)之qPCR結果(n=6) 63 圖 28、總細菌濃度換算檢量線 65 圖 29、活性細菌濃度換算檢量線 65 圖 30、NTC之Melting curve 105 表目錄 表 1、職業場所總細菌濃度 4 表 2、不同環境因子影響細菌活性之文獻 6 表 3、培養法之限制 9 表 4、顯微鏡分析方法之限制 11 表 5、以qPCR定量細菌數換算之方法比較 12 表 6、空氣中總細菌定量分析使用之引子及探針 14 表 7、即時定量聚合酶連鎖反應方法之優缺點分析 15 表 8、EMA核酸染劑結合qPCR定量細菌之研究 20 表 9、 PMA核酸染劑結合qPCR定量細菌之研究 21 表 10、定量總細菌之引子序列 45 表 11、定量總細菌之引子於BLAST測試結果 46 表 12、反應試劑引子濃度與DNA template體積 48 表 13、qPCR升溫條件測試 48 表 14、qPCR放大效率測試結果 49 表 15、總細菌qPCR檢量線 57 表 16、環境驗證空氣樣本qPCR抑制物處理之最佳稀釋倍數 67 表 17、環境採樣結果 68 表 18、統計檢定表 70 表 19、核酸染劑搭配螢光顯微鏡觀察 74 表 20、搭配EMA/PMA於活性細菌之適用性與條件 78 表 21、EMA核酸染劑搭配qPCR定量細菌之最佳條件參數 84 表 22、PMA核酸染劑搭配qPCR定量細菌之最佳條件參數 85 表 23、EMA/PMA-qPCR定量活性細菌濃度之線性關係 88 表 24、qPCR vs 細菌數檢量線整理 91 表 25、四種環境地點之主要細菌菌種 93 表 26、TSA可培養之細菌菌種 94 表 27、以universal primer定量總細菌之NTC Ct值 102 表 28、primer dimer比較 104 表 29、qPCR試劑之free-DNA汙染情形 104 | |
| dc.language.iso | zh-TW | |
| dc.title | 以核酸染劑結合聚合酶連鎖反應定量空氣中活性細菌 | zh_TW |
| dc.title | Quantification of viable bacteria in air by real-time qPCR in combination with nucleic acid dyes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃耀輝 | |
| dc.contributor.oralexamcommittee | 曾俊傑,李書安 | |
| dc.subject.keyword | 細菌,即時定量聚合酶,連鎖反應,ethidium monoazide,propidium monoazide, | zh_TW |
| dc.subject.keyword | Bacteria,Real-time quantitative PCR,ethidium monoazide,propidium monoazide, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-01-15 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
