請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65830
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
dc.contributor.author | Kenneth Hung | en |
dc.contributor.author | 洪基展 | zh_TW |
dc.date.accessioned | 2021-06-17T00:13:06Z | - |
dc.date.available | 2013-07-26 | |
dc.date.copyright | 2012-07-26 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-10 | |
dc.identifier.citation | [1] M. Sela, W. J. F.H., and C. Anfinsen, “Reductive cleavage of disulfide bridges in ribonuclease,” Science, vol. 125, no. 3250, pp. 691–692, 1957.
[2] J. Moult, “A decade of casp: progress, bottlenecks and prognosis in protein structure prediction,” Current Opinion in Structural Biology, vol. 15, pp. 285 – 289, 2005. [3] J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano, “Critical as-sessment of methods of protein structure prediction-round viii,” Proteins: Structure, Function, and Bioinformatics, vol. 77, no. S9, pp. 1–4, 2009. [4] T. Noguchi and Y. Akiyama, “Pdb-reprdb: a database of representative protein chains from the protein data bank (pdb) in 2003,” Nucleic Acids Research, vol. 31, pp. 492–493, 2003. [5] W. Browne, A. North, D. Phillips, K. Brew, T. C. Vanaman, and R. L. Hill, “A possible three-dimensional structure of bovine α-lactalbumin based on that of hen’s egg-white lysozyme,” Journal of Molecular Biology, vol. 42, no. 1, pp. 65 – 86, 1969. [6] J. Greer, “Comparative model-building of the mammalian serine proteases,” Journal of Molecular Biology, vol. 153, no. 4, pp. 1027 – 1042, 1981. [7] M. Sutcliffe, I. Haneef, D. Carney, and T. Blundell, “Knowledge based modelling of homologous proteins, part i: three-dimensional frameworks derived from the si¬ multaneous superposition of multiple structures,” Protein Engineering Design & Selection, vol. 1, no. 5, pp. 377–384, 1987. [8] S. H. Bryant and C. E. Lawrence, “An empirical energy function for threading pro-tein sequence through the folding motif,” Proteins: Structure, Function, and Bioin-formatics, vol. 16, no. 1, 1993. [9] K. Simons, C. Kooperberg, E. Huang, and D. Baker, “Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions1,” Journal of Molecular Biology, vol. 268, pp. 209 – 225, 1997. [10] K. Karplus, R. Karchin, J. Draper, J. Casper, Y. Mandel-Gutfreund, M. Diekhans, and R. Hughey, “Combining local-structure, fold-recognition, and new fold methods for protein structure prediction,” Proteins: Structure, Function, and Bioinformatics, vol. 53, no. S6, pp. 491–496, 2003. [11] J. Lee, S.-Y. Kim, K. Joo, I. Kim, and J. Lee, “Prediction of protein tertiary struc¬ture using profesy, a novel method based on fragment assembly and conformational space annealing,” Proteins: Structure, Function, and Bioinformatics, vol. 56, no. 4, pp. 704–714, 2004. [12] C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker, “Protein structure predic¬tion using rosetta,” in Numerical Computer Methods, Part D (L. Brand and M. L. Johnson, eds.), vol. 383 of Methods in Enzymology, pp. 66 – 93, Academic Press, 2004. [13] A. Kryshtafovych, ˇ C. Venclovas, K. Fidelis, and J. Moult, “Progress over the first decade of casp experiments,” Proteins: Structure, Function, and Bioinformatics, vol. 61, no. S7, pp. 225–236, 2005. [14] A. Kryshtafovych, K. Fidelis, and J. Moult, “Progress from casp6 to casp7,” Pro¬ teins: Structure, Function, and Bioinformatics, vol. 69, no. S8, pp. 194–207, 2007. [15] R. Jauch, H. C. Yeo, P. R. Kolatkar, and N. D. Clarke, “Assessment of casp7 structure predictions for template free targets,” Proteins: Structure, Function, and Bioinfor¬matics, vol. 69, no. S8, pp. 57–67, 2007. [16] S. Needleman and C. Wunsch, “A general method applicable to the search for simi-larities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, pp. 443 – 453, 1970. [17] T. Smith and M. Waterman, “Identification of common molecular subsequences,” Journal of Molecular Biology, vol. 147, pp. 195 – 197, 1981. [18] M. O. Dayhoff, W. C. Barker, and L. T. Hunt, “Establishing homologies in protein sequences,” in Enzyme Structure Part I (C. Hirs and S. N. Timasheff, eds.), vol. 91 of Methods in Enzymology, pp. 524 – 545, Academic Press, 1983. [19] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure, “Hidden markov models of biological primary sequence information,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, pp. 1059–1063, 1994. [20] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman, “Gapped blast and psi-blast: a new generation of protein database search programs,” Nucleic Acids Res, vol. 17, pp. 3389 – 3402, 1997. [21] K. Karplus, C. Barrett, and R. Hughey, “Hidden markov models for detecting remote protein homologies.,” Bioinformatics, vol. 14, no. 10, pp. 846–856, 1998. [22] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and C. Chothia, “Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods,” Journal of Molecular Biology, vol. 284, no. 4, pp. 1201 – 1210, 1998. [23] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “Clustal w: improving the sen-sitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. [24] L. Rychlewski, W. Li, L. Jaroszewski, and A. Godzik, “Comparison of sequence profiles. strategies for structural predictions using sequence information,” Protein Science, vol. 9, no. 2, pp. 232–241, 2000. [25] R. Edgar and K. Sjolander, “Satchmo: sequence alignment and tree construction using hidden markov models,” Bioinformatics, vol. 19, no. 11, pp. 1404 – 1411, 2003. [26] M. A. Marti-Renom, M. Madhusudhan, and A. Sali, “Alignment of protein se-quences by their profiles,” Protein Science, vol. 13, pp. 1071–1087, 2004. [27] J. S‥oding, “Protein homology detection by hmm-hmm comparison,” Bioinformatics, vol. 21, no. 7, p. 951, 2005. [28] A. Elofsson, D. Fischer, D. W. Rice, S. M. L. Grand, and D. Eisenberg, “A study of combined structure/sequence profiles,” Folding and Design, vol. 1, no. 6, pp. 451 – 461, 1996. [29] D. Fischer, “Hybrid fold recognition: combining sequence derived properties with evolutionary information,” in Pacific Symposium on Biocomputing, pp. 119–130, 2000. [30] A. R. Panchenko, A. Marchler-Bauer, and S. H. Bryant, “Combination of threading potentials and sequence profiles improves fold recognition,” Journal of Molecular Biology, vol. 296, no. 5, pp. 1319 – 1331, 2000. [31] C. L. Tang, L. Xie, I. Y. Koh, S. Posy, E. Alexov, and B. Honig, “On the role of structural information in remote homology detection and sequence alignment: New methods using hybrid sequence profiles,” Journal of Molecular Biology, vol. 334, no. 5, pp. 1043 – 1062, 2003. [32] O. O’Sullivan, K. Suhre, C. Abergel, D. G. Higgins, and C. Notredame, “3dcoffee: Combining protein sequences and structures within multiple sequence alignments,” Journal of Molecular Biology, vol. 340, no. 2, pp. 385 – 395, 2004. [33] M. Rossmann and P. Argos, “A comparison of the heme binding pocket in globins and cytochrombe b5*,” Journal of Biological Chemistry, vol. 250, pp. 7523–7532, 1975. [34] R. Lathrop, “The protein threading problem with sequence amino acid interac¬tion preferences is np-complete,” Protein Engineering Design and Selection, vol. 7, no. 9, p. 1059, 1994. [35] A. Godzik, “The structural alignment between two proteins: is there a unique an-swer?,” Protein Science, vol. 5, no. 7, pp. 1325–1338, 1996. [36] I. N. Shindyalov and P. E. Bourne, “Protein structure alignment by incremental com¬binatorial extension (ce) of the optimal path,” Protein Engineering, vol. 11, no. 9, pp. 739–747, 1998. [37] L. Holm and C. Sander, “Protein structure comparison by alignment distance matri¬ces,” Journal of Molecular Biology, vol. 233, pp. 123 – 138, 1993. [38] W. Taylor and C. Orengo, “Protein-structure alignment,” Journal Molecular Biol¬ ogy, pp. 1 – 22, 1989. [39] C. A. Orengo and W. R. Taylor, SSAP: Sequential structure alignment program for protein structure comparison, vol. Volume 266, pp. 617–635. Academic Press, 1996. [40] A. Falicov and F. E. Cohen, “A surface of minimum area metric for the structural comparison of proteins,” Journal of Molecular Biology, vol. 258, no. 5, pp. 871–892, 1996. [41] Y.-Z. Weng, D. Chang, Y.-F. Huang, and C.-W. Lin, “A study on the flexibility of enzyme active sites,” BMC Bioinformatics, vol. 12, no. Suppl 1, p. S32, 2011. [42] E. Krissinel and K. Henrick, “Secondary-structure matching (ssm), a new tool for fast protein structure alignment in three dimensions,” Acta Crystallographica Sec¬tion D, vol. 60, no. 12 Part 1, pp. 2256–2268, 2004. [43] J.-F. Gibrat, T. Madej, and S. H. Bryant, “Surprising similarities in structure com-parison,” Current Opinion in Structural Biology, vol. 6, no. 3, pp. 377–385, 1996. [44] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett, “Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm,” Journal of Molecular Biology, vol. 229, no. 3, pp. 707–721, 1993. [45] G. J. Kleywegt, “Use of non-crystallographic symmetry in protein structure re¬finement,” Acta Crystallographica Section D Biological Crystallography, vol. 52, pp. 842–857, 1996. [46] A. P. Singh and D. L. Brutlag, “Hierarchical protein structure superposition using both secondary structure and atomic representations,” in International Conference on Intelligent Systems for Molecular Biology, pp. 284–293, 1997. [47] N. N. Alexandrov and D. Fischer, “Analysis of topological and non-topological structural similarities in the pdb: new examples with old structures,” Proteins, vol. 25, pp. 354 – 365, 1996. [48] M. Gerstein and M. Levitt, “Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins,” Protein Sci, vol. 7, no. 2, pp. 445 – 456, 1998. [49] Y. Zhang and J. Skolnick, “Tm-align: a protein structure alignment algorithm based on the tm-score,” Nucleic Acids Research, vol. 33, no. 7, pp. 2302–2309, 2005. [50] S. B. Pandit and J. Skolnick, “Fr-tm-align: a new protein structural alignment method based on fragment alignments and the tm-score,” BMC Bioinformatics, vol. 9, no. 531, 2008. [51] A. Guerler and E.-W. Knapp, “Gis: a comprehensive source for protein structure similarities,” Nucleic Acids Research, vol. 38(Web Server issue), pp. W46–W52, 2010. [52] R. Kolodny, P. Koehl, and M. Levitt, “Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures,” Journal of Molecular Biology, vol. 346, pp. 1173 – 1188, 2005. [53] T. D. Wu, S. C. Schmidler, T. Hastie, and D. L. Brutlag, “Regression analysis of mul¬tiple protein structures,” Journal of Computational Biology, vol. 5, no. 3, pp. 585– 595, 1998. [54] A. V. Tendulkar, P. P. Wangikar, M. A. Sohoni, V. V. Samant, and C. Y. Mone, “Pa-rameterization and classification of the protein universe via geometric techniques,” Journal of Molecular Biology, vol. 334, no. 1, pp. 157–172, 2003. [55] M. Jacobson and A. Sali, Comparative Protein Structure Modeling and its Applica¬ tions to Drug Discovery, vol. 39 of Annual Reports in Medicinal Chemistry, pp. 259 – 276. Academic Press, 2004. [56] J. Greer, “Comparative modeling methods: Application to the family of the mam-malian serine proteases,” Proteins: Structure, Function, and Bioinformatics, vol. 7, no. 4, pp. 317–334, 1990. [57] D. Fischer and D. Eisenberg, “Protein fold recognition using sequence-derived pre-dictions,” Protein Science, vol. 5, no. 5, pp. 947–955, 1996. [58] H. Zhou and Y. Zhou, “Quantifying the effect of burial of amino acid residues on protein stability,” Proteins: Structure, Function, and Bioinformatics, vol. 54, no. 2, pp. 315–322, 2004. [59] A. Murzin, S. Brenner, T. Hubbard, and C. Chothia, “Scop: A structural classifica-tion of protein database for the investigation of sequence and structures,” Journal of Molecular Biology, vol. 247, pp. 536 – 540, 1995. [60] G. Csaba, F. Birzele, and R. Zimmer, “Systematic comparison of scop and cath: a new gold standard for protein structure analysis,” BMC Structural Biology, vol. 9, no. 1, p. 23, 2009. [61] A. V. Tendulkar, M. A. Sohoni, B. Ogunnaike, and P. P. Wangikar, “A geometric invariant-based framework for the analysis of protein conformational space,” Bioin-formatics, vol. 21, no. 18, pp. 3622–3628, 2003. [62] A. V. Tendulkar, A. A. Joshi, M. A. Sohoni, and P. P. Wangikar, “Clustering of protein structural fragments reveals modular building block approach of nature,” Journal Molecular Biology, vol. 338, no. 3, pp. 611–629, 2004. [63] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Norwell, MA, USA: Kluwer Academic Publishers, 1981. [64] M. Gerstein and M. Levitt, “Using iterative dynamic programming to obtain accu¬rate pairwise and multiple alignments of protein structures,” Fourth International Conference on Intelligent Systems in Molecular Biology, vol. 4, pp. 59–67, 1996. [65] E. A. Coutsias, C. Seok, and K. A. Dill, “Using quaternions to calculate rmsd,” Journal of Computational Chemistry, vol. 25, no. 15, pp. 1849–1857, 2004. [66] Z. Aung and K.-L. Tan, “Matalign: Precise protein structure comparison by matrix alignment,” Journal of Bioinformatics and Computational Biology, vol. 4, no. 6, pp. 1197–1216, 2006. [67] I. M. L. Billas, L. Moulinier, N. Rochel, and D. Moras, “Crystal structure of the ligand-binding domain of the ultraspiracle protein usp, the ortholog of retinoid x receptors in insects,” Journal of Biological Chemistry, vol. 276, no. 10, pp. 7465– 7474, 2001. [68] H. Gronemeyer, J.-A. Gustafsson, and V. Laudet, “Principles for modulation of the nuclear receptor superfamily,” Nature Reviews Drug Discovery, vol. 3, no. 11, pp. 950–964, 2004. [69] J. M. Olefsky, “Nuclear receptor minireview series,” Journal of Biological Chem-istry, vol. 276, no. 40, pp. 36863–36864, 2001. [70] H. Greschik, R. Flaig, J.-P. Renaud, and D. Moras, “Structural basis for the deactiva¬tion of the estrogen-related receptor γ by diethylstilbestrol or 4-hydroxytamoxifen and determinants of selectivity,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33639–33646, 2004. [71] R. E. Watkins, P. R. Davis-Searles, M. H. Lambert, and M. R. Redinbo, “Coacti-vator binding promotes the specific interaction between ligand and the pregnane x receptor,” Journal of Molecular Biology, vol. 331, no. 4, pp. 815–828, 2003. [72] M. Farnegardh, T. Bonn, S. Sun, J. Ljunggren, H. Ahola, A. Wilhelmsson, J.-A. Gustafsson, and M. Carlquist, “The three-dimensional structure of the liver x receptor reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands,” Journal of Biological Chemistry, vol. 278, no. 40, pp. 38821–38828, 2003. [73] M. Bolognesi, C. Rosano, R. Losso, A. Borassi, M. Rizzi, J. B.Wittenberg, A. Boffi, and P. Ascenzi, “Cyanide binding to lucina pectinata hemoglobin i and to sperm whale myoglobin: An x-ray crystallographic study,” Biophysical Journal, vol. 77, no. 2, pp. 1093–1099, 1999. [74] N. Shivapurkar, V. Stastny, N. Okumura, L. Girard, Y. Xie, C. Prinsen, F. B. Thunnissen, I. I.Wistuba, B. Czerniak, E. Frenkel, J. A. Roth, T. Liloglou, G. Xinarianos, J. K. Field, J. D. Minna, and A. F. Gazdar, “Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene,” Cancer Research, vol. 68, no. 18, pp. 7448–7456, 2008. [75] J. T. J. Lecomte, D. A. Vuletich, and A. M. Lesk, “Structural divergence and distant relationships in proteins: evolutionof the globins,” Current Opinion in Structural Biology, vol. 15, no. 3, pp. 290–301, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65830 | - |
dc.description.abstract | 摺疊辨識法(Fold recognition)是現行蛋白質結構預測方法中,運用較為廣
泛之方法之一,它是以現存之立體結構資訊為基礎來快速建構模型,其中決定模型品質好壞之關鍵,在於標的蛋白質(target protein)與已知結構資訊之結構模板(template structures)間之比對能力。在以上述結構模板為基礎之蛋白質結構預測(template-based protein structure prediction)方法中,最關鍵之步驟是要透過結構比對方式,來找出蛋白質間相似之三級結構,因其影響到整個方法之預測能力。摺疊辨識法之結構比對步驟,往往是利用特定之蛋白質結構特徵(structural features),來找出最佳比對結果。然而,當兩個蛋白質之胺基酸序列相似度低於30%,且兩序列擁有相似三級結構之狀況下,對標的蛋白質與已知結構資訊之結構模板間進行結構比對之困難度,就會隨之提高。此時,若能適當地結合胺基酸物化特性、序列以及結構資訊,來定義區段之摺疊方式,最後並組成一個完整之蛋白質結構,將可提升該類方法之預測品質。 因此本研究提出以貝氏架構(Bayesian framework)為基礎,來進行區域結構碼(structural alphabets)預測,即透過對未知結構資訊之標的蛋白質片段進行編碼,將蛋白質立體結構資訊,轉換成帶有結構資訊之一維蛋白質結構碼序列,最後再以結構比對的方式進行效能評估,我們稱之為MIRAGE-Bayesian alignment。在本研究中,整合區域結構特徵之結構編碼式比對法(structural alphabet-based alignment),已被證實可用以提升結構比對品質,以及演算法之計算效能。這些被用來提升比對品質,以及計算效能之蛋白質空間結構特徵,如「蛋白質骨幹中兩個平面夾角(dihedral torsion angles)」、「幾何不變量(geometric invariants)」以及「 Cα原子間距離(distance between Cα atoms)」等,其性質都和分子構形息息相關。而根據本研究演算法所獲得之結果,證實該演算法確能夠成功地提升摺疊辨識法之結構比對品質以及計算效能。 在本研究中,我們使用了三組作為演算法效能評估之測試資料,其中包含了費雪(Fischer)之68筆(蛋白質序列相似度介於8%至31%)蛋白質對,以及另外兩組資料量較大之蛋白質對(600筆及17,119筆),這些蛋白質對之序列相似度均低於30%。根據實驗結果,本研究所提出之演算法,不僅其比對品質,優於目前廣泛被用來結構比對之其它四種演算法(CE、SSM、TM-align以及 Fr-TM-align),且呈現出顯著之成果。因此我們可以推論,本研究所提出之演算法,不僅具有比對出蛋白質演化過程中,演化距離較遠之蛋白質對之良好能力,並相信此方法能進一步對蛋白質功能註解之研究作出貢獻。 | zh_TW |
dc.description.abstract | Fold recognition is a popular protein structure prediction approach relying on a good quality alignment of the target and the template structures. The crucial step of template-based protein structure prediction approaches is to recognize proteins that have similar tertiary structures. The value of the fold recognition alignment step often is to exploit specific structural features that are considered to be important for selecting the optimal alignment. It becomes very challenging when the sequence identity is low between target and template proteins. The key to the success of template-based method lies in the proper incorporation of physiochemical, sequence, and structural information.
A new idea featuring the Bayesian framework for encoding protein fragments of unknown structure in structural alphabets has been introduced to achieve a better fold recognition alignment, called MIRAGE-Bayesian alignment, in this study. The structural alphabet-based alignment has been developed on incorporating the target protein of unknown structural information with the local structural features for improving structural alignment quality and computational efficiency in this work. The spatial features, i.e., the dihedral torsion angles, the geometric invariants, and distance between Cα atoms, essentially determine the backbone conformation of proteins and are employed to improve the quality of structural alignment. The performance of the proposed algorithm was evaluated by performing a structure alignment based on the one-dimensional structural alphabet sequence containing information of local structural features of target and template protein sequence. The result shows that the proposed algorithm successfully demonstrated its ability to enhance the sequence-structure alignment quality, and computational efficiency of fold recognition. To assess the performance of the proposed algorithm, Fischer’s test set, comprised 68 protein pairs (sequence identity ranging 8% to 31%) and two other larger benchmark of 600 and 17,119 non-homologous protein pairs (sequence identity less than 30%) are employed to evaluate alignment quality and the computation efficiency. The result demonstrates that the alignment quality of the proposed algorithm outperforms the other four widely used algorithms, i.e., CE, SSM, TM-align, and Fr-TM-align. It is believed that the proposed algorithm has the potential to identify distantly related proteins and further help in the elucidation of protein function. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:13:06Z (GMT). No. of bitstreams: 1 ntu-101-D92548009-1.pdf: 16964058 bytes, checksum: ba8f1903759caf1272012db62a836932 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Acknowledgement i
中文摘要ii Abstract iv 1 Introduction .......................................... 1 1.1 FreeModeling...................................... .. 3 1.2 Template-BasedModeling .............................. 4 1.3 Alignment-Based Algorithms for Fold Recognition . . . . . . . . . . . . 6 1.4 LiteratureReview .................................... 7 1.5 TheAimofTheStudy .................................... 10 2 Materials and Method .............................. 13 2.1 ProteinStructuralAlphabets .......................... 14 2.1.1 Feature Selection for Protein Spatial Features . . . . . . . . . . . 15 2.1.2 Fuzzy c-Means Clustering for Representative Local Structures . . 15 2.1.3 Structural Alphabet Assignment Based on Bayesian Framework . 18 2.2 One-Dimensional Structural Alphabet Sequence-Based Alignment . . . . 22 2.2.1 TheVector-basedInitialAlignment . . . . . . . . . . 22 2.2.2 The Structural Alphabet-based Local Structure Alignment . . . . 25 2.2.3 TheRigid-bodyTransformation . . . . . . . . . . . . 25 2.3 ComparativeStudy ............................ ....... 27 2.3.1 CombinatorialExtension(CE) ........................ 27 2.3.2 Secondary Structure Matching (SSM) .. . . . . . . . 28 2.3.3 TM-align .......................................... 28 2.3.4 Fr-TM-align ....................................... 29 3 Results and Discussion .................................30 3.1 Construction of the Thirty Types of Structural Alphabets . . . . . . . . . 30 3.2 Hierarchical Three-Step Vector-Based Alignment . . . . . . . . . . . . . 36 3.3 Alignment of Protein Pairs From Different Protein Superfamilies . . . . . 47 4 Conclusions ............................................66 5 Future Directions ......................................68 | |
dc.language.iso | en | |
dc.title | 區域結構碼於改良蛋白質摺疊辨識法之結構比對研究-以貝氏推論架構為基礎 | zh_TW |
dc.title | Bayesian-Inferred Local Structural Alphabets for Improving Protein Structure Alignment of Fold Recognition | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔣榮先(Jung-Hsien Chiang),陳倩瑜(Chien-Yu Chen),蔡昆男(Kun-Nan Tsai),莊欽龍(Cheng-Long Chuang) | |
dc.subject.keyword | 結構預測,摺疊辨識法,結構字元,貝氏定理,結構比對,區域結構,幾何不變量, | zh_TW |
dc.subject.keyword | structure prediction,fold recognition,structural alphabet,Bayes’ theorem,structure alignment,local structure,geometric invariant, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 16.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。